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1. Verilog-AMS introduction

1.1 Overview

This Verilog-AMS Hardware Description Language (HDL) language reference manual defines a behavioral
language for analog and mixed-signal systems. Verilog-AMS HDL is derived from IEEE Std 1364-2005
Verilog HDL (referred to as IEEE Std 1364 Verilog from this point forward). This document is intended to
cover the definition and semantics of Verilog-AMS HDL as proposed by Accellera.

Verilog-AMS HDL consists of the complete IEEE Std 1364 Verilog specification, an analog equivalent for
describing analog systems (also referred to as Verilog-A as described in Annex C), and extensions to both
for specifying the full Verilog-AMS HDL.

Verilog-AMS HDL lets designers of analog and mixed-signal systems and integrated circuits create and use
modules which encapsulate high-level behavioral descriptions as well as structural descriptions of systems
and components. The behavior of each module can be described mathematically in terms of its ports and
external parameters applied to the module. The structure of each component can be described in terms of
interconnected sub-components. These descriptions can be used in many disciplines such as electrical,
mechanical, fluid dynamics, and thermodynamics.

For continuous systems, Verilog-AMS HDL is defined to be applicable to both electrical and non-electrical
systems description. It supports conservative and signal-flow descriptions by using the concepts of nets,
nodes, branches, and ports as terminology for these descriptions. The solution of analog behaviors which
obey the laws of conservation fall within the generalized form of Kirchhoff’s Potential and Flow Laws (KPL
and KFL). Both of these are defined in terms of the quantities (e.g., voltage and current) associated with the
analog behaviors.

Verilog-AMS HDL can also be used to describe discrete (digital) systems (per IEEE Std 1364 Verilog) and
mixed-signal systems using both discrete and continuous descriptions as defined in this LRM.

1.2 Mixed-signal language features

Verilog-AMS HDL extends the features of the digital modeling language (IEEE Std 1364 Verilog) to pro-
vide a single unified language with both analog and digital semantics with backward compatibility. Below is
a list of salient features of the resulting language:

— signals of both analog and digital types can be declared in the same module
— initial, always, and analog procedural blocks can appear in the same module

— both analog and digital signal values can be accessed (read operations) from any context (analog or
digital) in the same module

— digital signal values can be set (write operations) from any context outside of an analog proce-
dural block

— analog potentials and flows can only receive contributions (write operations) from inside an ana-
log procedural block

— the semantics of the initial and always blocks remain the same as in IEEE Std 1364 Verilog; the
semantics for the analog block are described in this manual

— the discipline declaration is extended to digital signals

— anew construct, connect statement, is added to facilitate auto-insertion of user-defined connection
modules between the analog and digital domains
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—  when hierarchical connections are of mixed type (i.e., analog signal connected to digital port or dig-
ital signal connected to analog port), user-defined connection modules are automatically inserted to
perform signal value conversion

1.3 Systems

A system is considered to be a collection of interconnected components which are acted upon by a stimulus
and produce a response. The components themselves can also be systems, in which case a hierarchical sys-
tem is defined. If a component does not have any subcomponents, it is considered to be a primitive compo-
nent. Each primitive component connects to zero or more nets. Each net connects to a signal which can
traverse multiple levels of the hierarchy. The behavior of each component is defined in terms of values at
each net.

A signal is a hierarchical collection of nets which, because of port connections, are contiguous. If all the nets
which make up a signal are in the discrete domain, the signal is a digital signal. If, on the other hand, all the
nets which make up a signal are in the continuous domain, the signal is an analog signal. A signal which
consists of nets from both domains is called a mixed signal.

Similarly, a port whose connections are both analog is an analog port, a port whose connections are both
digital is a digital port, and a port whose connections are both analog and digital is a mixed port. The compo-
nents connect to nodes through ports and nets to build a hierarchy, as shown in Figure 1-1.

Module \T Module

Module

Figure 1-1: Components connect to nodes through ports

If a signal is analog or mixed, it is associated with a node (see 3.6), while a purely digital signal is not asso-
ciated with a node. Regardless of the number of analog nets in an analog or mixed signal or how the analog
nets in a mixed signal are interspersed with digital nets, the analog portion of an analog or mixed signal is
represented by only a single node. This guarantees a mixed or analog signal has only one value which rep-
resents its potential with respect to the global reference voltage (ground).

In order to simulate systems, it is necessary to have a complete description of the system and all of its com-
ponents. Descriptions of systems are usually given structurally. That is, the description of a system contains
instances of components and how they are interconnected. Descriptions of components are given using
behavior and/or structure. A behavior is a mathematical description which relates the signals at the ports of
the components.

1.3.1 Conservative systems
An important characteristic of conservative systems is that there are two values associated with every node,

the potential (also known as the across value or voltage in electrical systems) and the flow (the through
value or current in electrical systems). The potential of the node is shared with all continuous ports and nets
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connected to the node so all continuous ports and nets see the same potential. The flow is shared so flow
from all continuous ports and nets at a node shall sum to zero (0). In this way, the node acts as an infinitesi-
mal point of interconnection in which the potential is the same everywhere on the node and on which no
flow can accumulate. Thus, the node embodies Kirchhoff's Potential and Flow Laws (KPL and KFL). When
a component connects to a node through a conservative port or net, it can either affect, or be affected by,
either the potential at the node, and/or the flow onto the node through the port or net.

With conservative systems it is also useful to define the concept of a branch. A branch is a path of flow
between two nodes through a component. Every branch has an associated potential (the potential difference
between the two nodes) and flow.

A behavioral description of a conservative component is constructed as a collection of interconnected
branches. The constitutive equations of the component are formulated so as to relate the branch potentials
and flows. Refer to 5.4.2 for further details on the probe/source approach.

1.3.1.1 Reference nodes

The potential of a single node is given with respect to a reference node. The potential of the reference node,
which is called ground in electrical systems, is always zero (0). Any net of continuous discipline can be
declared to be ground. In this case, the node associated with the net shall be the global reference node in the
circuit. This is compatible with all analog disciplines and can be used to bind a port of an instantiated mod-
ule to the reference node.

1.3.1.2 Reference directions

The reference directions for a generic branch are shown in Figure 1-2.

+ potential

Figure 1-2: Reference directions

The reference direction for a potential is indicated by the plus and minus symbols near each port. Given the
chosen reference direction, the branch potential is positive whenever the potential of the port marked with a
plus sign (2) is larger than the potential of the port marked with a minus sign (B). Similarly, the flow is pos-
itive whenever it moves in the direction of the arrow (in this case from + to -).

Verilog-AMS HDL uses associated reference directions. A positive flow enters a branch through the port
marked with the plus sign and exits the branch through the port marked with the minus sign.

1.3.2 Kirchhoff’s Laws

In formulating continuous system equations, Verilog-AMS HDL uses two sets of relationships. The first are
the constitutive relationships which describe the behavior of each component. Constitutive relationships can
be kept inside the simulator as built-in primitives or they can be provided by Verilog-AMS HDL module
definitions.
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The second set of relationships, interconnection relationships, describe the structure of the network. Inter-
connection relationships, which contain information on how the components are connected to each other, are
only a function of the system topology. They are independent of the nature of the components.

A Verilog-AMS HDL simulator uses Kirchhoff’s Laws to define the relationships between the nodes and the
branches. Kirchhoff’s Laws are typically associated with electrical circuits that relate voltages and currents.
However, by generalizing the concepts of voltages and currents to potentials and flows, Kirchhoff’s Laws
can be used to formulate interconnection relationships for any type of system.

Kirchhoff’s Laws provide the following properties relating the quantities present on nodes and branches, as

shown in Figure 1-3.
—  Kirchhoff's Flow Law (KFL)
The algebraic sum of all flows out of a node at any instant is zero (0).

—  Kirchhoff's Potential Law (KPL)
The algebraic sum of all the branch potentials around a loop at any instant is zero (0).

These laws imply a node is infinitely small; so there is negligible difference in potential between any two
points on the node and a negligible accumulation of flow.

flow,;
o— ] 7 B
ow + -
- + ~ s too - potential,
potential 2 potential S o
= = 3
< =
3 s
+ 3 s
§ + X + S,
S
S
Y
T _
e} potentialy
KFL KPL
-potential; -potential,
Slow; + flow, + flows = 0 +potential + potentialy; = 0

Figure 1-3: Kirchhoff’s Flow Law (KFL) and Potential Law (KPL)

1.3.3 Natures, disciplines, and nets

Verilog-AMS HDL allows definition of nets based on disciplines. The disciplines associate potential and
flow natures for conservative systems or either only potential or only flow nature for signal-flow systems.
The natures are a collection of attributes, including user-defined attributes, which describes the units (meter,
gram, newton, etc.), absolute tolerance for convergence, and the names of potential and flow access func-
tions.

The disciplines and natures can be shared by many nets. The compatibility rules help enforce the legal oper-
ations between nets of different disciplines.
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1.3.4 Signal-flow systems

A discipline may specify two nature bindings, potential and £low, or it may specify only a single bind-
ing, either potential or £low. Disciplines with two natures are know as conservative disciplines because
nodes which are bound to them exhibit Kirchhoff’s Flow Law, and thus, conserve charge (in the electrical
case). A discipline with only a potential nature or only a flow nature is known as a signal flow discipline.

As a result of port connections of analog nets, a single node may be bound to a number of nets of different
disciplines. If a node is bound only to disciplines which have potential nature only, current contributions to
that node are not legal. Flow for such a node is not defined. Conversely, if a node is bound only to disci-
plines which have flow nature only, potential contributions to that node are not legal. Potential for such a
node is not defined.

1.3.4.1 Potential signal-flow systems

Potential signal flow models may be written so potentials of module outputs are purely functions of poten-
tials at the inputs without taking flow into account.

The following example is a level shifting voltage follower:

module shiftPlus5(in, out);

input in;

output out;

voltage in, out; //voltage is a signal flow
//discipline compatible with
//electrical, but having a
//potential nature only

analog begin

V(out) <+ 5.0 + V(in);
end
endmodule

If a number of such modules were cascaded in series, it would not be necessary to conserve charge (i.e., sum
the flows) at any intervening node.

If, on the other hand, the output of this device were bound to a node of a conservative discipline (e.g., elec-
trical), then the output of the device would appear to be a controlled voltage source to ground at that
node. In that case, the flow (i.e., current) through the source would contribute to charge conservation at the
node. If the input of this device were bound to a node of a conservative discipline then the input would act as
a voltage probe to ground. Thus, when a net of signal flow discipline with potential nature only is bound to a
conservative node, contributions made to that net behave as voltage sources to ground.

Nets of potential signal flow disciplines in modules may only be bound to input or output ports of the
module, not to inout ports. In that case, potential contributions may not be made to input ports.

1.3.4.2 Flow signal-flow systems

Flow signal-flow models may be written so flows of module outputs are purely functions of flows at the
inputs without taking potential into account.

The following example is a current mirror:
module currmir (in, out);
input in;
output out;
current in, out; // current is a signal flow
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// discipline compatible with
// electrical, but having a
// flow nature only

analog begin
I(out) <+ -I(in);
end
endmodule

If a number of such modules were cascaded in series, it would not be necessary to conserve charge (i.e., sum
the potentials) at any loop of branches.

However, if the output of this device were bound to a node of a conservative discipline (e.g., electrical), then
the output of the device would appear to be a controlled current source flowing out of that node. In that case,
the potential (i.e., voltage) across the source would contribute to charge conservation at the node. If the input
of this device were bound to a node of a conservative discipline then the input would act as a current probe
inbound from that node. Thus, when a net of signal flow discipline with flow nature only is bound to a con-
servative node, contributions made to that net behave as current sources.

Nets of flow signal-flow disciplines in modules may only be bound to input or output ports of the module,
not to inout ports. Flow contributions may not be made to input ports in this case.

1.3.5 Mixed conservative/signal flow systems

When practicing the top-down design style, it is extremely useful to mix conservative and signal-flow com-
ponents in the same system. Users typically use signal-flow models early in the design cycle when the sys-
tem is described in abstract terms, and gradually convert component models to conservative form as the
design progresses. Thus, it is important to be able to initially describe a component using a signal-flow
model, and later convert it to a conservative model, with minimum changes. It is also important to allow
conservative and signal-flow components to be arbitrarily mixed in the same system.

The approach taken is to write component descriptions using conservative semantics, except port and net
declarations only require types for those values which are actually used in the description. Thus, signal-flow
ports only require the type of either potential or flow to be specified, whereas conservative ports require
types for both values (the potential and flow).

For example, consider a differential voltage amplifier, a differential current amplifier, and a resistor. The
amplifiers are written using signal-flow ports and the resistor uses conservative ports.

module voltage amplifier (out, in);
input in;
output out;
voltage out, // Discipline voltage defined elsewhere
in; // with access function V()
parameter real GAIN V = 10.0;

analog
V(out) <+ GAIN V * V(in);

endmodule

In this case, only the voltage on the ports are declared because only voltage is used in the body of the model.

module current amplifier (out, in);
input in;
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output out;

current out, // Discipline current defined elsewhere
in; // with access function I ()

parameter real GAIN I = 10.0;

analog
I(out) <+ GAIN I * I(in);

endmodule

Here, only current is used in the body of the model, so only current need be declared at the ports.

module resistor (a, b);
inout a, b;
electrical a, b; // access functions are V() and I()
parameter real R = 1.0;

analog
V(a,b) <+ R * I(a,b);

endmodule

The description of the resistor relates both the voltage and current on the ports. Both are defined in the con-
servative discipline electrical.

In summary, only those signals types declared on the ports are accessible in the body of the model. Con-
versely, only those signals types used in the body need be declared.

This approach provides all of the power of the conservative formulation for both signal-flow and conserva-
tive ports, without forcing types to be declared for unused signals on signal-flow nets and ports. In this way,
the first benefit of the traditional signal-flow formulation is provided without the restrictions.

The second benefit, that of a smaller, more efficient set of equations to solve, is provided in a manner which
is hidden from the user. The simulator begins by treating all ports as being conservative, which allows the
connection of signal-flow and conservative ports. This results in additional unnecessary equations for those
nodes which only have signal-flow ports. This situation can be recognized by the simulator and those equa-
tions eliminated.

Thus, this approach to allowing mixed conservative/signal-flow descriptions provides the following bene-
fits:

—  Conservative components and signal-flow components can be freely mixed. In addition, signal-flow
components can be converted to conservative components, and vice versa, by modifying only the
component behavioral description.

— Many of the capabilities of conservative ports, such as the ability to access flow and the ability to
access floating potentials, are available with signal-flow ports.

— Natures only have to be given for potentials and flows if they are accessed in a behavioral descrip-
tion.

— If nets and ports are used only in a structural description (only in instance statements), then no
natures need be specified.
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1.4 Conventions used in this document

This document is organized into sections, each of which focuses on some specific area of the language.
There are subsections within each section to discuss individual constructs and concepts. The discussion
begins with an introduction and an optional rationale for the construct or the concept, followed by syntax
and semantic description, followed by some examples and notes.

The formal syntax of Verilog-AMS HDL is described using Backus-Naur Form (BNF). The following con-
ventions are used:

1) Lower case words, some containing embedded underscores, are used to denote syntactic categories.
For example:

module declaration

2) Boldface red characters denote reserved keywords, operators and punctuation marks as required part
of the syntax. For example:

module = ;

3)  Blue characters are used to denote syntax productions that are Verilog-AMS extensions to IEEE Std
1364 Verilog syntax. For example:

connectrules_declaration ::=
connectrules connectrules_identifier ;
{ connectrules_item }
endconnectrules

4) A vertical bar ( |) that is not in boldface-red separates alternative items. For example:

parameter type ::= integer | real | realtime | time | string

5)  Square brackets ([ ]) that are not in boldface-red enclose optional items. For example:

name of module instance ::= module instance identifier [ range ]

6) Braces ( { } ) that are not in boldface-red enclose a repeated item unless the braces appear in bold
face, in which case it stands for itself. The item can appear zero or more times; the repetitions occur
from left to right as with an equivalent left-recursive rule. Thus, the following two rules are equiva-
lent:

list of param_assignments ::= param_assignment { , param_assignment }

list of param assignments ::=
param_assignment
| list of param assignments , param_assignment

The main text uses italicized font when a term is being defined, and constant-width font for examples,
file names, and while referring to constants. Reserved keywords in the main text and in examples are
in a constant-width bold font.

1.5 Contents

This document contains the following clauses and annexes:
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1. Verilog-AMS introduction
This clause gives the overview of analog modeling, defines basic concepts, and describes Kirchhoff’s Poten-
tial and Flow Laws.

2. Lexical conventions
This clause defines the lexical tokens used in Verilog-AMS HDL.

3. Data types

This clause describes the data types: integer, real, parameter, nature, discipline, and net, used in Verilog-
AMS HDL.

4. Expressions

This clause describes expressions, mathematical functions, and time domain functions used in Verilog-AMS
HDL.

5. Analog behavior

This clause describes the basic analog block and procedural language constructs available in Verilog-AMS
HDL for behavioral modeling.

6. Hierarchical structures
This clause describes how to build hierarchical descriptions using Verilog-AMS HDL.

7. Mixed signal
This clause describes the mixed-signal aspects of the Verilog-AMS HDL language.

8. Scheduling semantics
This clause describes the basic simulation cycle as applicable to Verilog-AMS HDL.

9. System tasks and functions
This clause describes the system tasks and functions in Verilog-AMS HDL.

10. Compiler directives
This clause describes the compiler directives in Verilog-AMS HDL.

11. Using VPI routines
This clause describes how the VPI routines are used.

12. VPI routine definitions
This clause defines each of the VPI routines in alphabetical order.

A. (normative) Formal syntax definition
This annex describes formal syntax for all Verilog-AMS HDL constructs in Backus-Naur Form (BNF).

B. (normative) List of keywords
This annex lists all the words which are recognized in Verilog-AMS HDL as keywords.

C. (normative) Analog language subset
This annex describes the analog subset of Verilog-AMS HDL.

D. (normative) Standard definitions
This annex provides the definitions of several natures, disciplines, and constants which are useful for writing
models in Verilog-AMS HDL.
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E. (normative) SPICE compatibility
This annex describes the Spice compatibility with Verilog-AMS HDL.

F. (normative) Discipline resolution methods
This annex provides the semantics for two methods of resolving the discipline of undeclared interconnect.

G. (informative) Change history
This annex provides a list of changes between various versions of the Verilog-AMS Language Reference
Manual.

H. (informative) Glossary
This annex describes various terms used in this document.
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2. Lexical conventions

2.1 Overview

This clause describes the lexical tokens used in Verilog-AMS HDL source text and their conventions.

2.2 Lexical tokens

Verilog-AMS HDL source text files shall be a stream of lexical tokens. A lexical token shall consist of one
or more characters. The layout of tokens in a source file is free format — that is, spaces and newlines shall
not be syntactically significant other than being token separators, except escaped identifiers (see 2.8.1).

The types of lexical tokens in the language are as follows:
—  white space
— comment
— operator
— number
—  string
— identifier

—  keyword

2.3 White space

White space shall contain the characters for spaces, tabs, newlines, and formfeeds. These characters shall be
ignored except when they serve to separate other lexical tokens. However, blanks and tabs shall be consid-
ered significant characters in strings (see 2.7).

2.4 Comments

The Verilog-AMS HDL has two forms to introduce comments. A one-line comment shall start with the two
characters // and ends with a newline. Block comments shall start with /* and end with * /. Block com-
ments shall not be nested. The one-line comment token // shall not have any special meaning in a block
comment.

comment ::= // from A.9.2
one line comment
| block _comment

one_line_comment ::= // comment_text \n
block comment ::= /* comment_text */

comment_text ::= { Any_ASCII_character }

Syntax 2-1—Syntax for comments

2.5 Operators

Operators are single, double, or triple character sequences and are used in expressions. Clause 4 discusses
the use of operators in expressions.
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Unary operators shall appear to the left of their operand. Binary operators shall appear between their oper-
ands. A conditional operator shall have two operator characters which separate three operands.

2.6 Numbers

Constant numbers can be specified as integer constants (defined in 2.6.1) or real constants.

number ::= // from A.8.7
decimal number
| octal number
| binary _number
| hex number
| real number

real_number! ::=
unsigned number . unsigned number
| unsigned number [ . unsigned number | exp [ sign ]| unsigned number
| unsigned number [ . unsigned number | scale_factor

exp:=el|E
scale factor::= T|G|M|K|k|m|u|n|p|£f|a
decimal _number ::=
unsigned number

| [ size ] decimal base unsigned number

| [ size ] decimal base x_digit { _}

| [ size ] decimal base z_digit { _}
binary number ::= [ size | binary_base binary value
octal number ::= [ size ] octal base octal value
hex number ::= [ size ] hex_base hex_value
sign ==+ -
size ::=non_zero_unsigned number
non_zero_unsigned_numberl ::=non_zero_decimal digit { | decimal digit}
unsigned_numberl ::=decimal_digit { _ | decimal_digit }
binary_valuel ::=Dbinary_digit { | binary_digit }
oc‘[al_valuel ::=octal_digit { _| octal_digit }

hex_valuel m=hex_digit { |hex_digit }

decimal_basel = "[s|s]d]| '[s|s]D
binary basel ::= '[s|s]b | '[s|s]B
octal_balsel == "[s|s]o | '[s|s]o
hex_basel == '[s|s]n| '[s|s]H

non_zero decimal digit::=1|2|3|4|5|6|7]|8]9
decimal digit::=0|1|2|3|4|5|6]7|8]9
binary digit ::= x_digit | z_digit| 0| 1
octal digit ::=x_digit|z digit|0|1|2|3|4]|5|6]|7
hex_digit ::=

x_digit|z digit|o|1]|2]|3|4|5|6]7|8]9
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|alblcld|e[£|A[B|C|D|E[F
x_digit =% | X

z digit:i==z|2z]|?

1) Embedded spaces are illegal

Syntax 2-2—Syntax for integer and real constants

2.6.1 Integer constants

Integer constants can be specified in decimal, hexadecimal, octal, or binary format. There are two forms to
express integer constants. The first form is a simple decimal number, which shall be specified as a sequence
of digits 0 through 9, optionally starting with a plus or minus unary operator. The second form specifies a
based constant, which shall be composed of up to three tokens—an optional size constant, an apostrophe
character (', ASCII 0x27) followed by a base format character, and the digits representing the value of the
number. It shall be legal to macro substitute these three tokens.

The first token, a size constant, shall specify the size of the constant in terms of its exact number of bits. It
shall be specified as a non-zero unsigned decimal number. For example, the size specification for two hexa-
decimal digits is 8, because one hexadecimal digit requires 4 bits.

The second token, a base format, shall consist of a case insensitive letter specifying the base for the number,
optionally preceded by the single character s (or s) to indicate a signed quantity, preceded by the apostrophe
character. Legal base specifications are d, D, h, H, o, O, b, or B, for the bases decimal, hexadecimal, octal,
and binary respectively. The apostrophe character and the base format character shall not be separated by
any white space.

The third token, an unsigned number, shall consist of digits that are legal for the specified base format. The
unsigned number token shall immediately follow the base format, optionally preceded by white space. The
hexadecimal digits a to f shall be case insensitive.

Simple decimal numbers without the size and the base format shall be treated as signed integers, whereas the
numbers specified with the base format shall be treated as signed integers if the s designator is included or as
unsigned integers if the base format only is used. The s designator does not affect the bit pattern specified,
only its interpretation. A plus or minus operator preceding the size constant is a unary plus or minus opera-
tor. A plus or minus operator between the base format and the number is an illegal syntax. Negative numbers
shall be represented in 2’s complement form.

An x represents the unknown value in hexadecimal, octal, and binary constants. A z represents the high-
impedance value. See 4.1 of IEEE Std 1364 Verilog for a discussion of the Verilog HDL value set. An x
shall set 4 bits to unknown in the hexadecimal base, 3 bits in the octal base, and 1 bit in the binary base. Sim-
ilarly, a z shall set 4 bits, 3 bits, and 1 bit, respectively, to the high-impedance value. If the size of the
unsigned number is smaller than the size specified for the constant, the unsigned number shall be padded to
the left with zeros. If the left-most bit in the unsigned number is an x or a z, then an x or a z shall be used to
pad to the left respectively. If the size of the unsigned number is larger than the size specified for the con-
stant, the unsigned number shall be truncated from the left.

The number of bits that make up an unsized number (which is a simple decimal number or a number without
the size specification) shall be at least 32. Unsized unsigned constants where the high order bit is unknown
(X or x) or three-state (z or z) shall be extended to the size of the expression containing the constant.

NOTE—In IEEE Std 1364-1995 Verilog HDL, in unsized constants where the high order bit is unknown or three-state,
the x or z was only extended to 32 bits.
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The use of x and z in defining the value of a number is case insensitive.

When used in a number, the question-mark (?) character is a Verilog-AMS HDL alternative for the z char-
acter. It sets 4 bits to the high-impedance value in hexadecimal numbers, 3 bits in octal, and 1 bit in binary.
The question mark can be used to enhance readability in cases where the high-impedance value is a don’t-
care condition. See the discussion of casez and casex in 9.5.1 of IEEE Std 1364 Verilog. The question-
mark character is also used in user-defined primitive state tables. See Table 8-1 in 8.1.6 of IEEE Std 1364
Verilog.

In a decimal constant, the unsigned number token shall not contain any x, z, or ? digits, unless there is
exactly one digit in the token, indicating that every bit in the decimal constant is x or z.

The underscore character () shall be legal anywhere in a number except as the first character. The under-
score character is ignored. This feature can be used to break up long numbers for readability purposes.

| Example 1 — Unsized literal constant numbers

659 // is a decimal number

'h 837FF // is a hexadecimal number

'07460 // is an octal number

4af // is illegal (hexadecimal format requires 'h)

| Example 2 — Sized literal constant numbers

4'p1001 // is a 4-bit binary number
| 5 'D 3 // is a 5-bit decimal number
3'b01x // is a 3-bit number with the least
// significant bit unknown
12'hx // is a 12-bit unknown number
16'hz // is a 1l6-bit high-impedance number

| Example 3 — Using sign with literal constant numbers

8 'd -6 // this is illegal syntax

-8 'd 6 // this defines the two's complement of 6,
// held in 8 bits—equivalent to -(8'd 6)

4 'shf // this denotes the 4-bit number '1111', to
// be interpreted as a 2's complement number,
// or '"-1'. This is equivalent to -4'h 1

-4 'sdl5 // this is equivalent to -(-4'd 1), or '0001"'

16'sd? // the same as 16'sbz

Example 4 — Automatic left padding

reg [11:0] a, b, ¢, d;
initial begin
a = "h x; // yields xxx
b = 'h 3x; // yields 03x
c = 'h z3; // yields zz3
d = 'h 0z3; // yields 0z3
end
reg [84:0] e, £, g;
e = 'h5; // yields {82{1'b0},3'b1l01}
f = "hx; // yields {85{1'hx}}
'hz; // yields {85{1'hz}}
14
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| Example 5 — Using underscore character in literal constant numbers

27 195 000
16'00011_0101_0001 1111
32 'h 12ab_£001

Sized negative constant numbers and sized signed constant numbers are sign-extended when assigned to a
req data type, regardless of whether or not the req itself is signed.

The default length of x and z is the same as the default length of an integer.
2.6.2 Real constants

| The real constant numbers are represented as described by IEEE Std 754, an IEEE standard for double pre-
cision floating point numbers.

Real numbers shall be specified in either decimal notation (e.g., 14.72), in scientific notation (e.g., 39e8,
which indicates 39 multiplied by 10 to the gth power) or in scaled notation (e.g., 24 . 7K, which indicates
24.7 multiplied by 10 to the third power). Real numbers expressed with a decimal point shall have at least
one digit on each side of the decimal point. The underscore character is legal anywhere in a real constant
except as the first character of the constant or the first character after the decimal point. The underscore
character is ignored.

Examples:

1.2

0.1

2394.26331

1.2E12 // the exponent symbol can be e or E
1.30e-2

0.1e-0

23E10

29E-2

236.123 763 e-12 // underscores are ignored
1.3u

Tk

The following are invalid forms of real numbers because they do not have at least one digit on each side of
the decimal point:

.2e-1
.1p
34.M

Table 2-1 describes each symbol and their value used in scaled notation or a real number.

Table 2-1—Scaled Symbols and notation

Symbol Value
lel2
G 1e9
15
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Table 2-1—Scaled Symbols and notation (continued)

Symbol Value
M le6
K, k le3
m le-3
u le-6
n le-9

p le-12

f le-15

a le-18

No space is permitted between the number and the symbol. Scale factors are not allowed to be used in defin-
ing digital delays (e.g., #5u).

See 4.2.1.1 for a discussion of real to integer conversion and 4.2.1.2 for a discussion of integer to real con-
version.

2.7 String literals

A string literal is a sequence of characters enclosed by double quotes (") and contained on a single line.
A string literal used as an operand in expressions and assignments shall be treated as unsigned integer con-
stants represented by a sequence of 8-bit ASCII values, with one 8-bit ASCII value representing one charac-
ter. The string variable data type can be used to store a string literal (see 3.3). Parameters of type
string are treated differently and are described in 3.4.6.

Certain characters can only be used in a string literal when preceded by an introductory character called an
escape character. Table 2-2 lists these characters in the right-hand column, with the escape sequence that

represents the character in the left-hand column.

Table 2-2—Specifying special characters in string

Escape Character produced by
string escape string

\n New line character

\t Tab character

\ \ character

\" " character

\ddd A character specified in 1-3 octal digits

0<d<7)

If less than three characters are used, the fol-
lowing character shall not be an octal digit.
Implementations may issue an error if the char-
acter represented is greater than \377.
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2.8 Identifiers, keywords, and system names

An identifier shall be used to give an object a unique name so it can be referenced. An identifier shall either
be a simple identifier or an escaped identifier (see 2.8.1). A simple identifier shall be any sequence of letters,
digits, dollar signs ($), and the underscore characters ().

The first character of an identifier shall not be a digit or $; it can be a letter or an underscore. Identifiers shall
be case sensitive.

Examples:

shiftreg a

busa index
error condition
merge ab

_bus3

ns$657

Implementations may set a limit on the maximum length of identifiers, but the limit shall be at least 1024
characters. If an identifier exceeds the implementation-specified length limit, an error shall be reported.

2.8.1 Escaped identifiers

Escaped identifiers shall start with the backslash character (\) and end with white space (space, tab, newline,
or formfeed). They provide a means of including any of the printable ASCII characters in an identifier (the
decimal values 33 through 126 or 21 through 7E in hexadecimal).

Neither the leading backslash character nor the terminating white space is considered to be part of the iden-
tifier. Therefore, an escaped identifier \cpu3 is treated the same as a non-escaped identifier cpu3.

Examples:

\busa+index

\-clock
\***error-condition***
\netl/\net2

\{a,b}

\a* (b+c)

2.8.2 Keywords

Keywords are predefined simple identifiers which are used to define the language constructs. A Verilog-
AMS HDL keyword preceded by an escape character is not interpreted as a keyword.

All keywords are defined in lowercase only. Annex B lists all defined Verilog-AMS HDL keywords.

2.8.3 System tasks and functions

The $ character introduces a language construct which enables development of user-defined system tasks
and functions. System constructs are not design semantics, but refer to simulator functionality. A name fol-

lowing the $ is interpreted as a system task or a system function.

The syntax for a system task or function is given in Syntax 2-3.
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analog system task enable ::= // from A.6.9
analog_system_task identifier [ ( [ analog_expression | { , [ analog_expression |} ) ] ;

system_task enable ::= system task identifier [ ( [ expression ] { , [ expression]} ) ] ;
task enable ::= hierarchical task identifier [ ( expression { , expression } ) ] ;

analog_system_function call ::= // from A.8.2
analog_system_function_identifier [ ( [ analog_expression | { , [ analog_expression | } ) ]

system_function call ::= system_function_identifier
[ (expression { , expression } ) |

system_function_identifier ::= $ [ a-zA-20-9_$ ] { [ a-zA-20-9_$ ] } // from 4.9.3
system_task identifier ::=$ [ a-zA-20-9_$ ] {[ a-zA-20-9_$ ] }

Syntax 2-3—Syntax for system tasks and functions

The $identifier system task or function can be defined in five places

— A standard set of $identifier system tasks and functions, as defined in Clause 17 and Clause 18 of
IEEE Std 1364 Verilog.

— Additional $Sidentifier system tasks and functions defined using the PLI, as described in Clause 20 of
IEEE Std 1364 Verilog.

— Additional $identifier system tasks and functions defined in Clause 4 and Clause 9 of this standard.

— Additional S$identifier system tasks and functions defined using the VPI as described in Clause 11
and Clause 12 of this standard.

— Additional $identifier system tasks and functions defined by software implementations.

Any valid identifier, including keywords already in use in contexts other than this construct can be used as a
system task or function name. The system tasks and functions described in Clause 17 and Clause 18 of IEEE
Std 1364 Verilog are part of this standard.

Examples:

$display ("display a message");
$finish;

2.8.4 Compiler directives

The ~ character (the ASCII value 0x60, called open quote or grave accent) introduces a language construct
used to implement compiler directives. The compiler behavior dictated by a compiler directive shall take
effect as soon as the compiler reads the directive. The directive shall remain in effect for the rest of the com-
pilation unless a different compiler directive specifies otherwise. A compiler directive in one description file
can therefore control compilation behavior in multiple description files.

The ‘identifier compiler directive construct can be defined in three places
— A standard set of ‘identifier compiler directives defined in Clause 19 of IEEE Std 1364 Verilog.
— Additional “identifier compiler directives defined in Clause 10 of this standard.

— Additional ‘identifier compiler directives defined by software implementations.

Any valid identifier, including keywords already in use in contexts other than this construct, can be used as a
compiler directive name.
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The compiler directives described in Clause 19 of IEEE Std 1364 Verilog are part of this standard.

Example:

“define WORDSIZE 8

2.9 Attributes

With the proliferation of tools other than simulators that use Verilog-AMS HDL as their source, a mecha-
nism is included for specifying properties about objects, statements and groups of statements in the HDL
source that can be used by various tools, including simulators, to control the operation or behavior of the
tool. These properties shall be referred to as atfributes. This section specifies the syntactic mechanism that
shall be used for specifying attributes.

The syntax is found in Syntax 2-4.

attribute_instance ::= (* attr_spec { , attr_spec } *) // from 4.9.1
attr_spec ::= attr_name [ = constant_expression |

attr_name ::= identifier

Syntax 2-4—Syntax for attributes

An attribute_instance can appear in the Verilog-AMS description as a prefix attached to a declaration, a
module item, a statement, or a port connection. It can appear as a suffix to an operator or a Verilog-AMS
function name in an expression.

If a value is not specifically assigned to the attribute, then its value shall be 1. If the same attribute name is
defined more than once for the same language element, the last attribute value shall be used and a tool can
give a warning that a duplicate attribute specification has occurred.

Nesting of attribute instances is disallowed. It shall be illegal to specify the value of an attribute with a con-
stant expression that contains an attribute instance.

Example 1 — The following example shows how to attach attributes to a case statement:

(* full case, parallel case ¥*)
case (foo)
<rest of case statement>

or

(* full case=1 ¥*)
(* parallel case=1 *) // Multiple attribute instances also OK
case (foo)

<rest of case statement>

or

(* full case, // no value assigned
parallel case=1 *)
case (foo)

<rest of case statement>
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Example 2 — To attach the full case attribute, but NOT the parallel case attribute:
(* full case *) // parallel case not specified

case (foo)
<rest of case statement>

or
(* full case=1, parallel case = 0 *)
case (foo)

<rest of case statement>

Example 3 — To attach an attribute to a module definition:

(* optimize power ¥*)
module modl (<port list>);

or

(* optimize power=1l *)
module modl (<port list>);

Example 4 — To attach an attribute to a module instantiation:

(* optimize power=0 *)
modl synthl (<port list>);

Example 5 — To attach an attribute to a reg declaration:

(* fsm state *) reg [7:0] statel;

(* fsm state=1 *) reg [3:0] state2, state3;

reg [3:0] regl; // this reg does NOT have fsm state set

(* fsm state=0 *) reg [3:0] reg2; // nor does this one
Example 6 — To attach an attribute to an operator:

a=Db + (* mode = "cla" *) c;

This sets the value for the attribute mode to be the string cla.

Example 7 — To attach an attribute to a Verilog function call:

a = add (* mode = "cla" *) (b, c);
Example 8 — To attach an attribute to a conditional operator:

a =Db ? (*¥ no glitch *) ¢ : d;
2.9.1 Syntax

The syntax for legal statements with attributes is shown in Syntax 2-5 through Syntax 2-10.

The syntax for module declaration attributes is given in Syntax 2-5.

module declaration ::= / from A.1.2
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{ attribute_instance } module_keyword module identifier [ module parameter port list ]

list_of ports ; { module item }
endmodule

| { attribute_instance } module keyword module_identifier [ module parameter port list ]

[ list of port declarations ]| ; { non_port module item }
endmodule

Syntax 2-5—Syntax for module declaration attributes

The syntax for port declaration attributes is given in Syntax 2-6.

port_declaration ::= // from A.1.3
{attribute_instance} inout declaration
| {attribute instance} input_declaration
| {attribute instance} output declaration
Syntax 2-6—Syntax for port declaration attributes
The syntax for module item attributes is given in Syntax 2-7.
module item ::= // from A.1.4

port_declaration ;
| non_port_module item

module or generate item ::=
{ attribute_instance } module or generate item declaration
| { attribute_instance } local parameter declaration ;
| { attribute_instance } parameter_override
| { attribute_instance } continuous_assign
| { attribute_instance } gate instantiation
| { attribute_instance } udp_instantiation
| { attribute_instance } module instantiation
| { attribute_instance } initial construct
| { attribute_instance } always_construct
| { attribute_instance } loop_generate construct
| { attribute_instance } conditional generate construct
| { attribute_instance } analog_construct

module or generate item declaration ::=

net_declaration

| reg_declaration

| integer declaration

| real_declaration

| time_declaration

| realtime_declaration

| event_declaration

| genvar_declaration

| task declaration

| function_declaration

| branch declaration

| analog_function declaration

non_port_module_item ::=
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module or generate_item
| generate region
| specify_block
| { attribute_instance } parameter_declaration ;
| { attribute_instance } specparam_declaration
| aliasparam_declaration

Syntax 2-7—Syntax for module item attributes

The syntax for function port, task, and block attributes is given in Syntax 2-8.

function_port_list ::= // from A.2.6
{ attribute_instance } tf input declaration { , { attribute instance } tf input declaration }
task item_declaration ::= // from A.2.7

block item declaration
| { attribute_instance } tf input declaration ;
| { attribute_instance } tf output declaration ;
| { attribute_instance } tf inout declaration ;
task port item ::=
{ attribute_instance } tf input_declaration
| { attribute_instance } tf output declaration
| { attribute_instance } tf inout declaration

block item_declaration ::= // from A.2.8
{ attribute_instance } reg [ discipline identifier | [ signed | [ range ]
list of block variable identifiers ;
| { attribute instance } integer list of block variable identifiers ;
| { attribute instance } time list of block variable identifiers ;
| { attribute instance } real list of block real identifiers ;
| { attribute instance } realtime list of block real identifiers ;
| { attribute instance } event declaration
| { attribute instance } local parameter declaration ;
| { attribute_instance } parameter declaration ;

Syntax 2-8—Syntax for function port, task, and block attributes

The syntax for port connection attributes is given in Syntax 2-9.

ordered_port_connection ::= { attribute instance } [ expression ] // from A.4.1

named_port_connection ::= { attribute_instance } . port_identifier ( [ expression] )

Syntax 2-9—Syntax for port connection attributes

The syntax for udp attributes is given in Syntax 2-10.

udp_declaration ::= // from A.5.1
{ attribute_instance } primitive udp_identifier ( udp port list) ;
udp_port_declaration { udp_port_declaration }
udp_body

endprimitive
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| { attribute_instance } primitive udp_identifier ( udp declaration port list) ;

udp_body

endprimitive

udp_output_declaration ::= // from A.5.2

{ attribute_instance } output port_identifier
| { attribute_instance } output [ discipline identifier | reg port_identifier [ = constant _expression ]

udp_input_declaration ::= { attribute _instance } input list of port_identifiers

udp_reg declaration ::= { attribute_instance } reg [ discipline identifier | variable identifier

Syntax 2-10—Syntax for udp attributes

2.9.2 Standard attributes

The Verilog-AMS HDL standardizes the following attributes:

The desc attribute is used to generate help messages when attached to parameter, variable and net
declarations within a module. The attribute must be assigned a string. See 3.4.3.

The units attribute is used to describe the units of the parameter or variable which it is attached to
within a module. The attribute must be assigned a string. See 3.4.3.

The op attribute is used to indicate whether a parameter or variable should be included in a short
report of the most useful operating-point values. The attribute must be assigned a value, which must
be either "yes" or "no". If the attribute is specified with the value "no", then the parameter or vari-
able will be omitted from the short report; otherwise, the parameter or variable will be included.

The multiplicity attribute is used to describe how the value of a parameter or variable should be
scaled for reporting. The attribute must be assigned one of the following string values: "multiply",
"divide", or "none". If the attribute is specified with the value "multiply", the value for the
associated parameter or variable will be multiplied by the value of $mfactor for the instance in
any report of operating-point values. If the attribute is specified with the value "divide", the value
for the associated parameter or variable will be divided by the value of $mfactor for the instance
in any report of operating-point values. If the multiplicity attribute is not specified, or specified
with the value "none", then no scaling will be performed. Note that this scaling only applies to oper-
ating-point value reports; it does not affect the automatic scaling detailed in 6.3.6.

Example - The following example shows how to attach standard attributes to a variable:

(* desc="effective resistance", units="Ohms", op="yes",

multiplicity="divide" *)
real reff;
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3. Data types

3.1 Overview

Verilog-AMS HDL supports integer, genvar, real, and parameter data types as found in IEEE Std
1364 Verilog. It includes the string data type defined by IEEE Std 1800 SystemVerilog. It also modifies
the parameter data types and introduces array of real as an extension of the real data type. Plus, it
extends the net data types to support a new type called wreal to model real value nets.

Verilog-AMS HDL introduces a new data type, called net discipline, for representing analog nets and

declaring disciplines of all nets and regs. The disciplines define the domain and the natures of poten-
tial and £low and their associated attributes for continuous domains.

3.2 Integer and real data types

The syntax for declaring integer and real is shown in Syntax 3-1.

integer declaration ::= integer list of variable identifiers ; / from A.2.1.3
real_declaration ::= real list_of real identifiers ;

list of real identifiers ::=real type { , real type } // from A.2.
list of variable identifiers ::= variable type { , variable type }

real type ::= // from A.2.2.1
real_identifier { dimension } [ = constant assignment pattern ]
| real identifier = constant expression
variable type ::=
variable identifier { dimension } [ = constant assignment pattern |
| variable identifier = constant _expression

dimension ::= [ dimension_constant _expression : dimension_constant expression ] // from A.2.5

Syntax 3-1—Syntax for integer and real declarations

An integer declaration declares one or more variables of type integer. These variables can hold values rang-
ing from 23140 2311, Arrays of integers can be declared using a range which defines the upper and lower
indices of the array. Both indices shall be constant expressions and shall evaluate to a positive integer, a neg-
ative integer, or zero (0).

Arithmetic operations performed on integer variables produce 2’s complement results.

A real declaration declares one or more variables of type real. The real variables are stored as 64-bit quan-
tities, as described by IEEE Std 754, an IEEE standard for double precision floating point numbers.

Arrays of parameter can be declared using a range which defines the upper and lower indices of the
array. Both indices shall be constant expressions and shall evaluate to a positive integer, a negative integer,
or zero (0).

Integers are initialized at the start of a simulation depending on how they are used. Integer variables whose
values are assigned in an analog context default to an initial value of zero (0). Integer variables whose values
are assigned in a digital context default to an initial value of x. Real variables are initialized to zero (0) at the
start of a simulation.
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Examples:
integer a[l:64]; // an array of 64 integer values
real float; // a variable to store real value
real gain factor[1:30]; // array of 30 gain multipliers

// with floating point values
integer flag array[0:8][0:3]; // a multidimensional integer array
real vtable[0:16][0:7][0:64]; // a multidimensional real array

See 4.2.1.1 for a discussion of real to integer conversion and 4.2.1.2 for a discussion of integer to real con-
version.

3.2.1 Output variables

The standard attributes for descriptions and units, described in 2.9.2, have a special meaning for variables
declared at module scope. Module scope variables with a description or units attribute, or both, shall be
known as output variables, and Verilog-AMS simulators shall provide access to their values. SPICE-like
simulators print the names, values, units, and descriptions of output variables for SPICE primitives along
with voltages and currents when displaying operating-point information, and these variables are available
for plotting as a function of time (or the swept variable of a dc sweep).

For example, a module for a MOS transistor with the following declaration at module scope provides the
output variable cgs.

(* desc="gate-source capacitance", units="F" *)
real cgs;

An operating-point display from the simulator might include the following information:
cgs = 4.21le-15 F gate-source capacitance

Units and descriptions specified for block-level variables shall be ignored by the simulator, but can be used
for documentation purposes.

3.3 String data type

Verilog-AMS includes the string data type from IEEE Std 1800 SystemVerilog, which is an ordered col-
lection of characters. The length of a string variable is the number of characters in the collection. Vari-
ables of type string are dynamic as their length may vary during simulation.

IEEE Std 1364 Verilog supports string literals, but only at the lexical level. In Verilog, string literals behave
like packed arrays of a width that is a multiple of 8 bits. A string literal assigned to a packed array of an inte-
gral variable of a different size is either truncated to the size of the variable or padded with zeroes to the left
as necessary.

In Verilog-AMS, string literals behave exactly the same as in Verilog. However, Verilog-AMS also supports
the string data type to which a string literal can be assigned. When using the string data type instead of
an integral variable, strings can be of arbitrary length and no truncation occurs. Literal strings are implicitly
converted to the string type when assigned to a string type or used in an expression involving
string type operands.

The string variables can take on the special value " ", which is the empty string. A string shall not con-
tain the special character "\0".
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The syntax to declare a string is as follows:
string variable name [ = initial value | ;

where variable _name is a valid identifier and the optional initial value can be a string literal, the value ""
for an empty string, or a string type constant expression, such as a string parameter (see 3.4.6). For example:

parameter string default name = "John Smith";
string myName = default name;

If an initial value is not specified in the declaration, the variable is initialized to "", the empty string. An
empty string has zero length.

Arrays and multidimensional arrays of string are also supported. For example:

string names[1:3] = '{"first", "middle", "last"};
string paths[0:2][0:1] =
I{ l{"dirlll, "fileA"}, l{"dir2", "fileA"}, |} {"dirl", "fileB"}};

Verilog-AMS provides a set of operators that can be used to manipulate combinations of string variables and
string literals. The basic operators defined on the string data type are listed in Table 3-3.

A string literal can be assigned to a string or an integral type. If their size differs, the literal is right justi-
fied and either truncated on the left or zero filled on the left, as necessary. For example:

reg [8*4:1] h = "hello"; // assigns to h "ello"
reg [10:0] a = "A"; // assigns to a 'b000_ 0100 0001

A string or a string literal can be assigned directly to a string variable. A string cannot be assigned
to an integral type. A string literal assigned to a string variable is converted according to the following
steps:

— All "\ 0" characters in the string literal are ignored (i.e., removed from the string).
— If the result of the first step is an empty string literal, the string is assigned the empty string.
—  Otherwise, the string is assigned the remaining characters in the string literal.

For example:
string sl = "hello\Oworld"; // sets sl to "helloworld"
As a second example:

reg [15:0] r;
integer i = 1;

string b = "";

string a = {"Hi", b};

b = "Hi"; // OK

b = {5{"Hi"}}; // OK

a = {1i{"Hi"}}; // OK (non constant replication)

r = {i{"Hi"}}; // invalid (non constant replication)
a = {i{b}}; // OK

a = {a,b}; // OK

a = {"Hi",Db}; // OK

r = {"H",""}; // yields "H\O". "" is converted to 8’Db0
b = {"H",""}; // yields "H". "" is the empty string
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Table 3-3—String operators

Operator Semantics
Strl == Str2 Equality. Checks whether the two strings are equal. Result is 1 if they are equal and
0 if they are not. Both strings can be of type string, or one of them can be a
string literal which is implicitly converted to a string type for the comparison. If
both operands are string literals, the operator is the same Verilog equality operator
as for integer types.
Strl != Str2 Inequality. Logical negation of ==

Strl < Str2
Strl <= Str2
Strl > Str2
Strl >= Str2

Comparison. Relational operators return 1 if the corresponding condition is true
using the lexicographical ordering of the two strings Str1 and Str2. Both oper-
ands can be of type string, or one of them can be a string literal which is implic-
itly converted to a string type for the comparison.

{Strl,Str2,..,Strn}

Concatenation. Each operand can be of type string or a string literal (it shall be
implicitly converted to type string). If at least one operand is of type string,
then the expression evaluates to the concatenated string and is of type string. If
all the operands are string literals, then the expression behaves like a Verilog con-
catenation of integral types; if the result is then used in an expression involving
string types, it is implicitly converted to the string type.

{multiplier{Str}}

Replication. Str can be of type string or a string literal. multiplier mustbe
of integral type and can be nonconstant. [fmultiplier is nonconstant or Str is
of type string, the result is a string containing N concatenated copies of Str,
where N is specified by multiplier. If Strisaliteral and multiplier is
constant, the expression behaves like numeric replication in Verilog (if the result is
used in another expression involving string types, it is implicitly converted to the

string type).

3.4 Parameters

The syntax for parameter declarations is shown in Syntax 3-2.

The list of parameter assignments shall be a comma-separated list of assignments, where the right hand side
of the assignment, called the initializer, shall be a constant expression, that is, an expression containing only
constant numbers and previously defined parameters.

For parameters defined as arrays, the initializer shall be a constant_assignment _pattern expression which is
a list of constant expressions containing only constant numbers and previously defined parameters using an
assignment pattern (see 4.2.14) , i.e. within ' { and } delimiters.

Parameters represent constants, hence it is illegal to modify their value at runtime. However, parameters can
be modified at compilation time to have values which are different from those specified in the declaration
assignment. This allows customization of module instances. A parameter can be modified with the defparam
statement or in the module_instance statement.

local parameter declaration ::=

// from 4.2.1.1

localparam [ signed ] [ range ] list of param assignments
| localparam parameter type list of param_assignments

parameter declaration ::=

parameter [ signed | [ range ] list_of param_assignments
| parameter parameter type list of param assignments

27

Copyright © 2023 Accellera Systems Initiative. All rights reserved.




Accellera Std VAMS-2023 Draft
Accellera Standard for VERILOG-AMS - Analog and Mixed-signal Extensions to Verilog HDL

specparam_declaration ::= specparam [ range | list of specparam_assignments ;
parameter_type ::=
integer | real | realtime | time | string
aliasparam_declaration ::= aliasparam parameter identifier = parameter identifier ;
list of param_assignments ::= param_assignment { , param_assignment } // from A.2.3

param_assignment ::= // from A.2.4
parameter_identifier = constant_mintypmax_expression { value range }
| parameter_identifier range = constant_assignment_pattern { value range }

range ::= [ msb_constant_expression : Isb_constant expression ] // from 4.2.5

value range ::=
value range type ( value range expression : value range expression )

| value range type ( value range expression : value range expression ]
| value range type [ value range expression : value range expression )
| value range type [ value range expression : value range expression ]
| value range type ' { string { , string } }
| exclude constant expression

value range type :: = from | exclude

value range expression ::= constant_expression | -inf | inf

Syntax 3-2—Syntax for parameter declaration

By nature, analog behavioral specifications are characterized more extensively in terms of parameters than
their digital counterparts. There are three fundamental extensions to the parameter declarations defined in
IEEE Std 1364 Verilog:

— A range of permissible values can be defined for each parameter. In IEEE Std 1364 Verilog, this
check had to be done in the user’s model or was left as an implementation specific detail.

— Parameter arrays of basic integer and real data types can be specified.

—  String parameters may be declared.
3.4.1 Type specification

The parameter declaration can contain an optional fype specification. In this sense, the parameter key-
word acts more as a type qualifier than a type specifier. A default value for the parameter shall be specified.

The following examples illustrate this concept:

parameter real slew rate = le-3;
parameter integer size = 16;

If the #ype of a parameter is not specified, it is derived from the type of the final value assigned to the param-
eter, after any value overrides have been applied, as in IEEE Std 1364 Verilog. Note that the #ype of a string
parameter (see 3.4.6) and any of the array parameters (see 3.4.4) is mandatory.

If the type of the parameter is specified as integer or real, and the value assigned to the parameter con-
flicts with the type of the parameter, the value is converted to the type of the parameter (see 4.2.1.1). No
conversion shall be applied for strings; it shall be an error to assign a numeric value to a parameter declared
as string or to assign a string value to a real parameter, whether that parameter was declared as real
or had its type derived from the type of the value of the constant expression.

Example:
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parameter real size = 10;
Here, size is coerced to 10.0.
3.4.2 Value range specification

A parameter declaration can contain optional specifications of the permissible range of the values of a
parameter. More than one range can be specified for inclusion or exclusion of values as legal values for the
parameter.

Brackets, [ and ], indicate inclusion of the end points in the valid range. Parentheses, ( and ), indicate
exclusion of the end points from the valid range. It is possible to include one end point and not the other
using [ ) and ( ]. The first expression in the range shall be numerically smaller than the second expres-
sion in the range.

Examples:

parameter real neg rail = -15 from [-50:0);
parameter integer pos rail = 15 from (0:50);
parameter real gain = 1 from [1:1000];

Here, the default value for neg _rail is -15 and it is only allowed to acquire values within the range of
-50 <= neg _rail < 0. Similarly, the default value for parameter pos rail is 15 and it is only allowed
to acquire values within the range of 0 < pos rail < 50. And, the default value for gain is 1 and it is
allowed to acquire values within the range of 1 <= gain <= 1000.

The keyword inf can be used to indicate infinity. If preceded by a negative sign, it indicates negative infin-
ity.

Example:
parameter real val3=0 from [0:inf) exclude (10:20) exclude (30:40];

A single value can be excluded from the possible valid values for a parameter.

Example:

parameter real res = 1.0 exclude 0;

Here, the value of a parameter is checked against the specified range. Range checking applies to the value of
the parameter for the instance and not against the default values specified in the device. It shall be an error
only if the value of the parameter is out of range during simulation.

Valid values of string parameters are indicated differently. The £rom keyword may be used with a list of
valid string values, or the exclude keyword may be used with a list of invalid string values. In either case, the
list is constructed using an assignment pattern (see 4.2.14), i.e. enclosed in braces preceded by an apostro-
phe, ' { }, and the items are separated by commas.

Examples:
parameter string transistortype = "NMOS" from '{ "NMOS", "PMOS" };
parameter string filename = "output.dat" exclude '{ "" };
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3.4.3 Parameter units and descriptions
The standard attributes for descriptions and units, described in 2.9.2, can be used for parameters.

Example:

(* desc="Resistance", units="Ohms" *)
parameter real res = 1.0 from [0:inf);

The units and descriptions are only for documentation of the module; in particular, no dimensional analysis
is performed on the units. However, it is often important for the user to know the units of a parameter, such
as an angle that could be specified in radians or degrees. It should be noted that the *timescale directive
of IEEE Std 1364 Verilog also affects units throughout the module, which can be confusing to the user.

The units and descriptions are of particular value for compact models, where the number of parameters is
large and the description is not always clear from the parameter name. Simulators can use this information
when generating help messages for a module; many SPICE-like simulators can generate help messages with
this information for built-in primitives.

Units and descriptions specified for block-level parameters shall be ignored by the simulator, but can be
used for documentation purposes.

3.4.4 Parameter arrays

Verilog-AMS HDL includes behavioral extensions which utilize arrays. It requires these arrays be initialized
| in their definitions and allows overriding their values, as with other parameter types.Parameter arrays have
the following restrictions. Failure to follow these restrictions shall result in an error.

— A type of a parameter array shall be given in the declaration.

— An array assigned to an instance of a module to override the default value of an array parameter
shall be of the exact size of the parameter array, as determined by its declaration.

— Since array range in the parameter array declaration may depend on previously-declared parameters,
the array size may be changed by overriding the appropriate parameters. If the array size is changed,
the parameter array shall be assigned an array of the new size from the same module as the parame-
ter assignment that changed the parameter array size.

Example:

parameter real poles[0:3] = '{ 1.0, 3.198, 4.554, 2.00 };
3.4.5 Local parameters

IEEE Std 1364 Verilog local parameters, identified by the Localparam keyword, are identical to parame-
ters except that they cannot directly be modified with the defparam statement or by the ordered or named
parameter value assignment, as described in 6.3. Local parameters can be assigned constant expressions con-
taining parameters, which can be modified with de fparam statements or module instance parameter value
assignments.

3.4.6 String parameters

String parameters can be declared. Strings are useful for parameters that act as flags, where the correspon-

dence between numerical values and the flag values may not be obvious. The set of allowed values for the

string can be specified as a comma-separated list of strings inside curly braces. String parameters may be
| used with the string operators listed in Table 3-3.
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| Example:

module ebersmoll (c,b,e);
inout c, b, e;
electrical ¢, b, e;
parameter string transistortype = "NPN" from '{ "NPN", "PNP" };
parameter real alphaf = 0.99 from (0:inf);
parameter real alphar = 0.5 from (0:inf);
parameter real ies = 1.0e-17 from (0:inf);
parameter real ics = 1.0e-17 from (0:inf);
real sign, ifor, irev;
analog begin

sign = (transistortype == "NPN") ? 1.0 : -1.0;
ifor = ies * (limexp (sign*V(b,e)/$vt)-1);
irev = ics * (limexp (sign*V(b,c)/$vt)-1);
I(b,e) <+ sign*(ifor - alphar * irev);
I(b,c) <+ sign*(irev - alphaf * ifor);
end
endmodule

Note how the string parameter transistortype associates the string "PNP" with a negative one (-1) value
for the variable sign. It is common in compact modeling of transistors for the equations to be formulated
for NPN or NMOS devices, and behavior of a PNP or PMOS can be described by multiplying all the volt-
ages and currents by -1, even though the “p” denotes positively-charged carriers in the channel of the
PMOS.

3.4.7 Parameter aliases

Aliases can be defined for parameters. This allows an alternate name to be used when overriding module
parameter values as described in 6.3. Parameters with different names may be used for the same purpose in
different simulators; some compact models accept parameter names with the letter “O” in place of the num-
ber “0.”

Parameter aliases are subject to the following rules.

— The type of an alias (real, integer, or string) shall be determined by the original parameter,
as is its range of allowed values, if specified.

—  The alias_identifier shall not occur anywhere else in the module; in particular, it shall not conflict
with a different parameter_identifier, and the equations in the module shall reference the parameter
by its original name, not the alias.

—  Multiple aliases can point to the same parameter.

—  When overriding parameters, it shall be an error to specify an override for a parameter by its original
name and one or more aliases, or by more than one alias, regardless of how the override is done (by
name or using the defparam statement).

—  When the simulator generates a list of parameter values used, such as for an operating point analysis,
only the original name shall appear in the list.

For example, suppose a module named nmos2 has the following declarations in the module:

parameter real dtemp = 0 from [-‘P CELSIUSO:inf);
aliasparam trise = dtemp;

Then the following two instantiations of the module are valid:

nmos2 #(.trise(5)) ml(.d(d), .g(g), .s(s), .b(b));
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nmos2 # (.dtemp(5)) m2(.d(d), .g(g), .s(s), .b(b));
and the value of the parameter dtemp, as used in the module equations for both instances, is 5.
This last instantiation is an error:

nmos2 #(.trise(5), .dtemp(5)) m3(.d(d), .g(g), .s(s), .b(b)); //error
because an override is specified for the parameter dtemp and its alias, even though the values are equal.

Parameter aliases may also be declared for the hierarchical parameter system functions (see 9.18) as in the
example below:

aliasparam m = Smfactor;
3.4.8 Multidimensional parameter array examples

The following example demonstrates the usage of a multidimensional real array parameter and various
usages of assignment patterns.
module test;
electrical out[0:2];
electrical in[0:2];
/* Instantiate crosstalk module passing a
* multidimensional parameter array literal
* for channel coupling
*/
crosstalk #(.c('{'{0.0,0.1,0.1},'{0.1,0.0,0.1},'{0.12,0.1,0.0}}))
Cl(out,in,1'bl);

gen Gl (in);
sink S1 (out):;
endmodule

module crosstalk(out, in, distort enable);
input in[0:2];
input distort enable;
output out[0:2];
// A multidimensional real parameter array for channel coupling
parameter real c[0:2][0:2] =
'{'{0.0,0.2,0.2},'{0.2,0.0,0.2},'{0.2,0.2,0.0}};

electrical in[0:2];
electrical out[0:2];

/* A multidimensional real variable to hold the distortion calculations
* all elements are initialized to 0.0 using
* an assignment pattern and replication operator
*/

real distort[0:2][0:2] = "{ 3{ '"{3{0.0}}}};

/* multidimensional string to flag excessive distortion

* all elements are initialized to " " using
* an assignment pattern and replication operator
*/

string above 0p5[0:2][0:2] = "{ 3{ "{3{" "}}}};

real in val[0:2];
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integer ii, jj;

analog begin
// assign to variable using an assignment pattern
in_val = "{Vv(in[0]),V(in[1l]),V(in[2])};

if (distort enable) begin
for( 1i=0; ii <= 2; ii=ii+l1 ) begin
for (jj=0; 3jj<= 2; jj=jj+1 ) begin
distort[ii] [jj] = c[ii]1[3jl*in_valljjl;
if (distort([ii]l[jj] > 0.1)
above 0Op5([ii] [jj] = "*";
end
end
end

V(out[0]) <+ in vall [2]1;
V(out[1l]) <+ distort [2];

V(out[2]) <+ distort

+ distort[0][1l] + distort
] + in val[l] + distort

[0]
[11]
] + distort([2][1] + in vall[2

’

0] 0
[1]1[0 1
[2]1[0 ]
@ (final_step) begin
$display ("Table of distortions greater than 0.5");
$display ("#012"); // write the table header
for( ii=0; ii <= 2; ii=ii+l ) begin
Swrite ("%0d",ii); // %0d means write int in minimum width
for (3j3=0; jj<= 2; jj=3jj+1 ) begin
$write (above Op5[ii][jjl);

end
$display; // print a newline
end
end
end
endmodule
3.5 Genvars

Genvars are integer-valued variables which compose static expressions for instantiating structure behavior-
ally such as accessing analog signals within behavioral looping constructs. The syntax for declaring genvar
variables is shown in Syntax 3-3.

genvar_declaration ::= // from A.4.2
genvar list of genvar identifiers ;

list_of genvar identifiers ::=
genvar_identifier { , genvar_identifier }

Syntax 3-3—Syntax for genvar declaration

The static nature of genvar variables is derived from the limitations upon the contexts in which their values
can be assigned.

Examples:

genvar i;
analog begin

for (i = 0; 1 < 8; 1 =1 + 1) begin
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V(out[1]) <+ transition(value[i], td, tr);
end

end

The genvar variable i can only be assigned within the for-loop control. Assignments to the genvar variable
i can consist only of expressions of static values, e.g., parameters, literals, and other genvar variables.

3.6 Net_discipline

In addition to the data types supported by IEEE Std 1364 Verilog, an additional data type, net_discipline, is
introduced in Verilog-AMS HDL for continuous time and mixed-signal simulation. net_discipline is used to
declare analog nets, as well as declaring the domains of digital nets and regs.

A signal can be digital, analog, or mixed, and is a hierarchical collection of nets which are contiguous
(because of port connections). For analog and mixed signals, a single node is associated with all continuous
net segments of the signal. The fundamental characteristic of analog and mixed signals is the values of the
associated node are determined by the simultaneous solution of equations defined by the instances con-
nected to the node using Kirchhoff’s conservation laws. In general, a node represents a point of physical
connections between nets of continuous-time description and it obeys conservation-law semantics.

A net is characterized by the discipline it follows. For example, all low-voltage nets have certain common
characteristics, all mechanical nets have certain common characteristics, etc. Therefore, a net is always

declared as a type of discipline. In this sense, a discipline is a user-defined type for declaring a net.

A discipline is characterized by the domain and the attributes defined in the natures for potential and
flow.

3.6.1 Natures

A nature is a collection of attributes. In Verilog-AMS HDL, there are several pre-defined attributes. In addi-
tion, user-defined attributes can be declared and assigned constant values in a nature.

The nature declarations are at the same level as discipline and module declarations in the source text. That is,
natures are declared at the top level and nature declarations do not nest inside other nature declarations, dis-

cipline declarations, or module declarations.

The syntax for defining a nature is shown in Syntax 3-4.

nature declaration ::= // from A.1.6

nature nature_identifier [ : parent nature | [ ; ]

{ nature_item }

endnature
parent nature ::=

nature identifier

| discipline identifier . potential or flow

nature_item ::= nature_attribute
nature_attribute ::= nature_attribute identifier = nature_attribute expression ;
potential or flow ::=potential | flow // fro

m
nature_attribute identifier ::= // from A.9.3
abstol | access |ddt_nature | idt_nature | units | identifier
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Syntax 3-4—Syntax for nature declaration

A nature shall be defined between the keywords nature and endnature. Each nature definition shall
have a unique identifier as the name of the nature and shall include all the required attributes specified in
3.6.1.2.

Examples:

nature current;

units = "A";

access = I;

idt_nature = charge;

abstol = 1u;
endnature

nature voltage;
units = "V";
access = V;
abstol = 1lu;

endnature

3.6.1.1 Derived natures
A nature can be derived from an already declared nature. This allows the new nature to have the same attri-
butes as the attributes of the existing nature. The new nature is called a derived nature and the existing

nature is called a parent nature. If a nature is not derived from any other nature, it is called a base nature.

In order to derive a new nature from an existing nature, the new nature name shall be followed by a colon
(:) and the name of the parent nature in the nature definition.

A derived nature can declare additional attributes or override attribute values of the parent nature, with cer-
tain restrictions (as outlined in 3.6.1.2) for the predefined attributes.

The attributes of the derived nature are accessed in the same manner as accessing attributes of any other
nature.

Examples:

nature ttl curr;

units = "A";

access = I;

abstol = 1u;
endnature

// An alias
nature ttl net curr : ttl curr;

endnature

nature new curr : ttl curr; // derived, but different
abstol = Im; // modified for this nature
maxval = 12.3; // new attribute for this nature

endnature

35
Copyright © 2023 Accellera Systems Initiative. All rights reserved.



Accellera Std VAMS-2023 Draft
Accellera Standard for VERILOG-AMS - Analog and Mixed-signal Extensions to Verilog HDL

3.6.1.2 Attributes

Attributes define the value of certain quantities which characterize the nature. There are five predefined
attributes: abstol, access, idt_nature, ddt_nature, and units. In addition, user-defined attri-
butes can be defined in a nature (see 3.6.1.3). Attribute declaration assigns a constant expression to the attri-
bute name, as shown in the example in 3.6.1.1.

abstol

The abstol attribute is a real value constant expression that provides a tolerance measure (metric)
for convergence of potential or flow calculations. It specifies the maximum negligible value for sig-
nals associated with the nature.

This attribute is required for all base natures. It is legal for a derived nature to change abstol, but
if left unspecified it shall inherit the abstol from its parent nature.

access

The access attribute identifies the name for the access function. When the nature is used to bind a
potential, the name is used as an access function for the potential; when the nature is used to bind a
flow, the name is used as an access function for the flow. The usage of access functions is described
further in 4.4.

This attribute is required for all base natures. The constant expression assigned to it shall be an iden-
tifier (by name, not as a string).

It is illegal for a derived nature to change the access attribute; the derived nature always inherits the
access attribute of its parent nature.

idt_nature

The idt_nature attribute provides a relationship between a nature and the nature representing its
time integral.

idt_nature can be used to reduce the need to specified tolerances on the idt () operator. If this
operator is applied directly on nets, the tolerance can be taken from the node, which eliminates the
need to give a tolerance with the operator.

If specified, the constant expression assigned to idt _nature shall be the name (not a string) of a
nature which is defined elsewhere. It is possible for a nature to be self-referencing with respect to its
idt_nature attribute. In other words, the value of idt_nature can be the nature that the
attribute itself is associated with.

The idt_nature attribute is optional; the default value is the nature itself. While it is possible
to override the parent’s value of idt_nature using a derived nature, the nature thus specified
shall be related (share the same base nature) to the nature the parent uses for its idt_nature.

ddt nature

The ddt_nature attribute provides a relationship between a nature and the nature representing its
time derivative.

ddt_nature can be used to reduce the need to specified tolerances on the ddt () operator. If this
operator is applied directly on nets, the tolerance can be taken from the node, eliminating the need to
give a tolerance with the operator.

If specified, the constant expression assigned to ddt_nature shall be the name (not a string) of a
nature which is defined elsewhere. It is possible for a nature to be self-referencing with respect to its
ddt_nature attribute. In other words, the value of ddt_nature can be the nature that the
attribute itself is associated with.
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The ddt_nature attribute is optional; the default value is the nature itself. While it is possible
to override the parent’s value of ddt_nature using a derived nature, the nature thus specified
shall be related (share the same base nature) to the nature the parent uses for its ddt_nature.

units

The units attribute provides a binding between the value of the access function and the units for
that value. The units field is provided so simulators can annotate the continuous signals with their
units and is also used in the net compatibility rule check.

This attribute is required for all base natures. It is illegal for a derived nature to define or change the
units; the derived nature always inherits its parent nature units. If specified, the constant
expression assigned to it shall be a string.

3.6.1.3 User-defined attributes

In addition to the predefined attributes listed above, a nature can specify other attributes which can be useful
for analog modeling. Typical examples include certain maximum and minimum values to define a valid
range.

A user-defined attribute can be declared in the same manner as any predefined attribute. The name of the
attribute shall be unique in the nature being defined and the value being assigned to the attribute shall be
constant.

3.6.2 Disciplines

A discipline description consists of specifying a domain type and binding any natures to potential or
flow.

The syntax for declaring a discipline is shown in Syntax 3-5.

discipline_declaration ::= / from A.1.7
discipline discipline identifier [ ; ]
{ discipline_item }
enddiscipline
discipline_item ::=
nature_binding
| discipline_domain_binding
| nature_attribute_override
nature binding ::= potential or flow nature identifier ;
potential or flow ::= potential | flow
discipline_domain_binding ::= domain discrete_or continuous ;
discrete_or_continuous ::= discrete | continuous

nature attribute override ::= potential or flow . nature attribute

Syntax 3-5—Syntax for discipline declaration

A discipline shall be defined between the keywords discipline and enddiscipline. Each discipline
shall have a unique identifier as the name of the discipline.
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The discipline declarations are at the same level as nature and module declarations in the source text. That
is, disciplines are declared at the top level and discipline declarations do not nest inside other discipline dec-
larations, nature declarations, or module declarations. Analog behavioral nets (nodes) must have a discipline
defined for them but interconnect and digital nets do not. It is possible to set the discipline of interconnect
and digital nets through discipline declaration with hierarchical references to these nets. It shall be an error
to hierarchically override the discipline of a net that was explicitly declared unless it is a compatible disci-
pline.

3.6.2.1 Nature binding
Each discipline can bind a nature to its potential and £low.

Only the name of the nature is specified in the discipline. The nature binding for potential is specified using
the keyword potential. The nature binding for flow is specified using the keyword £1ow.

The access function defined in the nature bound to potential is used in the model to describe the signal-flow
which obeys Kirchhoff’s Potential Law (KPL). This access function is called the potential access function.

The access function defined in the nature bound to flow is used in the model to describe a quantity which
obeys Kirchhoff’s Flow Law (KFL). This access function is called the flow access function.

Disciplines with two natures are called conservative disciplines and the nets associated with conservative
disciplines are called conservative nets. Conservative disciplines shall not have the same nature specified
for both the potential and the £1low. Disciplines with a single nature are called signal-flow disciplines
and the nets with signal-flow disciplines are called signal-flow nets. A signal-flow discipline may specify
either the potential or the flow nature, as shown in the following examples.

Examples:

Conservative discipline

discipline electrical;
potential Voltage;
flow Current;

enddiscipline

Signal-flow disciplines

discipline voltage;
potential Voltage;
enddiscipline

discipline current;
flow Current;
enddiscipline

Multi-disciplinary example

Disciplines in Verilog-AMS HDL allow designs of multiple disciplines to be easily defined and simulated.
Disciplines can be used to allow unique tolerances based on the size of the signals and outputs displayed in
the actual units of the discipline. This example shows how an application spanning multiple disciplines can
be modeled in Verilog-AMS HDL. It models a DC-motor driven by a voltage source.

module motorckt;
parameter real freg=100;
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electrical gnd; ground gnd;

electrical drive;
rotational shaft;

motor ml (drive, gnd, shaft);
vsine #(.freq(freq), .ampl(1.0)) vl (drive, gnd);

endmodule

// vp: positive terminal [V,A] vn: negative terminal [V,A]
// shaft:motor shaft [rad,Nm]
// INSTANCE parameters
// Km = motor constant [Vs/rad] Kf = flux constant [Nm/A]
// j = inertia factor [Nms”"2/rad] D= drag (friction) [Nms/rad]
// Rm = motor resistance [Ohms] ILm = motor inductance [H]
// A model of a DC motor driving a shaft
module motor (vp, vn, shaft);
inout vp, vn, shaft;
electrical vp, vn;
rotational shaft;

parameter real Km = 4.5, Kf = 6.2;
parameter real j = 0.004, D = 0.1;
parameter real Rm = 5.0, Lm = 0.02;

analog begin

V(vp, vn) <+ Km*Theta(shaft) + Rm*I(vp, vn) + ddt(Lm*I(vp, vn));
Tau (shaft) <+ Kf*I(vp, vn) - D*Theta(shaft) - ddt(j*Theta(shaft));
end
endmodule

3.6.2.2 Domain binding

Analog signal values are represented in continuous time, whereas digital signal values are represented in dis-
crete time. The domain attribute of the discipline stores this property of the signal. It takes two possible
values, discrete or continuous. Signals with continuous-time domains are real valued. Signals with

discrete-time domains can either be binary (0, 1, X, or z), integer or real values.

Examples:

discipline electrical;
domain continuous;
potential Voltage;
flow Current;

enddiscipline

discipline ddiscrete;
domain discrete;
enddiscipline

The domain attribute is optional. The default value for domain is continuous for disciplines which
specify nature bindings. It is an error for a discipline to have a domain binding of discrete if it has

nature bindings.
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3.6.2.3 Natureless disciplines and domainless disciplines

It is possible to define a discipline with no nature bindings. These are known as natureless disciplines (his-
torically referred to as empty disciplines).

Such disciplines may have a domain binding or they may be domainless, thus allowing the domain to be
determined by the connectivity of the net (see 7.4 and Annex F).

Disciplines without a domain binding and without a nature binding are known as domainless disciplines.
The domain binding of a discipline with nature bindings defaults to continuous if not specified. A
discipline with nature bindings cannot be a domainless discipline.

Example:

discipline natureless;
domain continuous;
enddiscipline

discipline domainless
enddiscipline

Usage of domainless disciplines and continuous natureless disciplines is discouraged. Domainless and con-
tinuous natureless disciplines are provided for backward compatibility with previous versions of the Ver-
ilog-AMS and Verilog-A standards. Furthermore, domainless disciplines are deprecated and the definition
of a domainless discipline may be made an error in future versions of Verilog-AMS HDL.

3.6.2.4 Discipline of nets and undeclared nets

It is possible for a module to have nets where there are no discipline declarations. If such a net appears
bound only to ports in module instantiations, it may have no declaration at all or may be declared to have a
net type such as wire, tri, wand, wor, etc. If it is referenced in behavioral code, then it must have a net

type.

In these cases, the net shall be treated as having no discipline. If the net is referenced in behavioral code,
then it shall be treated as having no discipline with a domain binding of discrete, otherwise it shall be
treated as having no discipline and no domain binding. If a net has a wire type but is not connected to behav-
ioral code (interconnect) and it resolved to domain discrete then its wire type shall be used in any net
type resolution steps per IEEE Std 1364 Verilog.

The discipline and domain of all nets of a mixed or continuous signal is determined by discipline resolution
if these nets do not already have a declared discipline and domain binding (see 7.4 and Annex F).

3.6.2.5 Overriding nature attributes from discipline

A discipline can override the value of the bound nature for the pre-defined attributes (except as restricted by
3.6.1.2), as shown for the flow tt1 curr in the example below. To do so from a discipline declaration, the
bound nature and attribute needs to be defined, as shown for the abstol value within the discipline tt1 in
the example below. The general form is shown as the attr override terminal in Syntax 3-5: the keyword
flow or potential, then the hierarchical separator . and the attribute name, and, finally, set all of this
equal to (=) the new value (e.g., flow.abstol = 10u).

Examples:

nature ttl curr;
units = "A";
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access = I;
abstol = 1lu;
endnature

nature ttl volt;
units = "V";
access = V;
abstol = 100u;

endnature

discipline ttl;
potential ttl volt;
flow ttl curr;
flow.abstol = 10u;

enddiscipline

3.6.2.6 Deriving natures from disciplines

A nature can be derived from the nature bound to the potential or £low in a discipline. This allows the
new nature to have the same attributes as the attributes for the nature bound to the potential or the £low
of the discipline.

If the nature binding to the potential or the flow of a discipline changes, the new nature shall automatically
inherit the attributes for the changed nature.

In order to derive a new nature from flow or potential of a discipline, the nature declaration shall also
include the discipline name followed by the hierarchical separator (.) and the keyword £1low or poten-
tial, as shown for tt1 net curr in the example below.

A nature derived from the flow or potential of a discipline can declare additional attributes or override val-
ues of the attributes already declared.

Examples:

nature ttl net curr : ttl.flow; // from the example in 3.6.2.5
endnature // abstol = 10u as modified in ttl

nature ttl net volt : ttl.potential; // from the example in 3.6.2.5

abstol = 1m; // modified for this nature
maxval = 12.3; // new attribute for this nature
endnature

3.6.2.7 User-defined attributes

Like natures, a discipline can specify user-defined attributes. Discipline user-defined attributes are use-
ful for the same reasons as nature user-defined attributes (see 3.6.1.3).

3.6.3 Net_discipline declaration

Each net_discipline declaration associates nets with an already declared discipline. Syntax 3-6 shows how to
declare disciplines of nets and regs.

net_declaration ::= // from A.2.1.3

| discipline identifier [ range ] list of net identifiers ;

41
Copyright © 2023 Accellera Systems Initiative. All rights reserved.



Accellera Std VAMS-2023 Draft
Accellera Standard for VERILOG-AMS - Analog and Mixed-signal Extensions to Verilog HDL

| discipline_identifier [ range ] list of net decl assignments ;

range ::= [ msb_constant_expression : Isb_constant expression ] // from A.2.5
list_of net decl assignments ::=net_decl assignment { , net_decl assignment } // from A.2.3
list of net identifiers ::= ams net identifier { , ams net identifier }

net_decl assignment ::= ams_net_identifier = expression // from A.2.4

Syntax 3-6—Syntax for net discipline declaration

If a range is specified for a net, the net is called a vector net; otherwise it is called a scalar net. A vector net
is also called a bus.

Examples:

electrical [MSB:LSB] nl; // MSB and LSB are parameters
voltage [5:0] n2, n3;

magnetic inductor;

ddiscrete [10:1] connectorl;

Nets represent the abstraction of information about signals. As with ports, nets represent component inter-
connections. Nets declared in the module interface define the ports to the module (see 6.5.4).

A net used for modeling a conservative system shall have a discipline with both access functions (poten-
tial and flow) defined. When modeling a signal-flow system, the discipline of a net can have only
potential access functions. When modeling a discrete system, the discipline of a net can only have a
domain of discrete defined.

Nets declared with a natureless discipline or declared without a discipline do not have declared natures, so
such nets can not be used in analog behavioral descriptions (because the access functions are not known).
However, such nets can be used in structural descriptions, where they inherit the natures from the ports of
the instances of modules that connect to them.

3.6.3.1 Net descriptions

Nets can be declared with a description attribute. This information can be used by the simulator to generate
help messages for a module.

Example:
(* desc="drain terminal" *) electrical d;

If a net is also a module port, the description attribute may also be specified on the port declaration line (in
which the net is declared as input, inout, or output). If the description attribute is specified for the
same net_identifier in both the net discipline declaration and the port declaration, then the last attribute value
shall be used and the tool can give a warning that a duplicate attribute specification has occurred.

3.6.3.2 Net Discipline Initial (Nodeset) Values

Nets with continuous disciplines are allowed to have initializers on their net discipline declarations; how-
ever, nets of non-continuous disciplines are not.

electrical a = 5.0;
electrical [0:4] bus = '{2.3,4.5,,6.0};
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mechanical top.foo.w = 250.0;

The initializer shall be a constant_expression and will be used as a nodeset value for the potential of the net
by the analog solver. In the case of analog buses, a constant array expression is used as an initializer. A null
value in the constant array indicates that no nodeset value is being specified for this element of the bus.

If different nets of a node have conflicting initializers, then initializers on hierarchical net declarations win.
If there are multiple hierarchical declarations, then the declaration on the highest level wins. If there are mul-
tiple hierarchical declarations on the highest level, then it is a race condition for which the initializer wins. If
the multiple conflicting initializers are not hierarchical, then it is also a race condition for which the initial-
izer wins.

3.6.4 Ground declaration
Each ground declaration is associated with an already declared net of continuous discipline. The node asso-
ciated with the net will be the global reference node in the circuit. The net must be assigned a continuous

discipline to be declared ground.

Syntax 3-7 shows the syntax used for declaring the global reference node (ground).

net_declaration ::= / from A.2.1.3

| ground [ discipline identifier ] [ range | list of net identifiers ;

Syntax 3-7—Syntax for declaring ground

Examples:

module loadedsrc(in, out);
input in;
output out;
electrical in, out;
electrical gnd;
ground gnd;
parameter real srcval = 5.0;

resistor #(.r(10K)) rl(out,gnd);
analog begin
V(out) <+ V(in,gnd)*2;
end
endmodule

3.6.5 Implicit nets

Nets can be used in structural descriptions without being declared. In this case, the net’s discipline and
domain binding will be determined by discipline resolution (see 7.4 and Annex F).

Examples:

module top(il, 12, ol, o2, 03);
input i1, 1i2;
output ol, o2, 03;
electrical i1, i2, ol, 02, 03;
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// abl, ab2, cbl, cb2 are implicit nets, not declared
blk a al( il, abl );
blk a a2( i2, ab2 );
blk b bl( abl, cbl );
blk b b2 ( ab2, cb2 );
blk ¢ cl( ol, 02, 03, cbl, cb2);
endmodule

3.7 Real net declarations

The wreal, or real net data type, represents a real-valued physical connection between structural entities. A
wreal net shall not store its value. A wreal net can be used for real-valued nets which are driven by a single
driver, such as a continuous assignment. If no driver is connected to a wreal net, its value shall be zero
(0.0). Unlike other digital nets which have an initial value of ‘z’, wreal nets shall have an initial value of
Zero.

wreal nets can only be connected to compatible interconnect and other wreal or real expressions. They can-
not be connected to any other wires, although connection to explicitly declared 64-bit wires can be done via
system tasks $realtobits and $bitstoreal. Compatible interconnect are nets of type wire, tri, and wreal
where the IEEE Std 1364 Verilog net resolution is extended for wreal. When the two nets connected by a
port are of net type wreal and wire/tri, the resulting single net will be assigned as wreal. Connection
to other net types will result in an error.

Syntax 3-8 shows the syntax for declaring digital nets.

net_declaration ::= // from A.2.1.3

| wreal [ discipline identifier ] [ range] list of net identifiers ;
| wreal [ discipline identifier ] [ range] list_of net decl assignments ;

Syntax 3-8—Syntax for declaring digital nets

Examples:

module drv(in, out);
input in;
output out;
wreal in;
electrical out;
analog begin

V(out) <+ in;

end

endmodule

module top();
real stim;
electrical load;
wreal wrstim;
assign wrstim = stim;
drv fl(wrstim, load);
always begin
#1 stim = stim + 0.1;
end
endmodule
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3.8 Default discipline

Verilog-AMS HDL supports the “default_discipline compiler directive. This directive specifies a
default discrete discipline to be applied to any discrete net which does not have an explicit discipline decla-
ration as part of discipline resolution (see 7.4 and Annex F). A description and its syntax is shown in 10.2.

3.9 Disciplines of primitives

With internal simulator primitives the discipline of the vpiLoConn to be used in discipline resolution during
a mixed-signal simulation must be known. For digital primitives the domain is discrete and thus the disci-
pline is set via the default discipline directive as it is for digital modules. If the discipline of digital connec-
tions (vpiLoConn) to a mixed net are unknown then the default discipline must be specified (via the
directive or other vendor specific method). If not specified, an error will result during discipline resolution.

For analog primitives, the discipline will be defined by the attribute port discipline on that instance. If no
attribute is found then it will acquire the discipline of other compatible continuous disciplines connected to
that net segment. If no disciplines are connected to that net, then the default discipline is set to electrical.
This is further described in E.3.2.2.

3.10 Discipline precedence

While a net itself can be declared only in the module to which it belongs, the discipline of the net can be
specified in a number of ways.

—  The discipline name can appear in the declaration of the net.

—  The discipline name can be used in a declaration which makes an out of context reference to the net
from another module.

Discipline conflicts can arise if more than one of these methods is applied to the same net. Discipline con-
flicts shall be resolved using the following order of precedence:

1) A declaration from a module other than the module to which the net belongs using an out-of-module
reference, e.g.,

module examplel;
electrical example2.net;
endmodule

2)  The local declaration of the net in the module to which it belongs, e.g.,

module example2;
electrical net;
endmodule

3) Discipline resolution (see 7.4 and Annex F)

It is not legal to have two different disciplines at the same level of precedence for the same net.

3.11 Net compatibility

Certain operations can be done on nets only if the two (or more) nets are compatible. For example, if an
access function has two nets as arguments, they must be compatible. The following rules shall apply to
determine the compatibility of two (or more) nets:

45
Copyright © 2023 Accellera Systems Initiative. All rights reserved.



Accellera Std VAMS-2023 Draft
Accellera Standard for VERILOG-AMS - Analog and Mixed-signal Extensions to Verilog HDL

Discrete Domain Rule: Digital nets with the same signal value type (i.e., real, integer) are compatible
with each other if their disciplines are compatible (i.e., the discipline has a discrete domain or is empty.

Signal Domain Rule: 1t shall be an error to connect two ports or nets of different domains unless there is a
connect statement (see 7.4) defined between the disciplines of the nets or ports.

Signal Connection Rule: It shall be an error to connect two ports or nets of the same domain with incompat-
ible disciplines.

3.11.1 Discipline and Nature Compatibility

The following rules shall apply to determine discipline compatibility:
—  Self Rule (Discipline): A discipline is compatible with itself.

—  Natureless Discipline Rule: A natureless discipline is compatible with all other disciplines of the
same domain.

—  Domainless Discipline Rule: A domainless discipline is compatible with all disciplines as there is no
nature or domain conflict. Note that domainless disciplines are deprecated.

—  Domain Incompatibility Rule: Disciplines with different domain attributes are incompatible.
—  Potential Incompatibility Rule: Disciplines with incompatible potential natures are incompatible.

—  Flow Incompatibility Rule: Disciplines with incompatible flow natures are incompatible.

The following rules shall apply to determine nature compatibility:
—  Self Rule (Nature): A nature is compatible with itself.
—  Non-Existent Binding Rule: A nature is compatible with a non-existent discipline binding.
—  Base Nature Rule: A derived nature is compatible with its base nature.
—  Derived Nature Rule: Two natures are compatible if they are derived from the same base nature.

—  Units Value Rule: Two natures are compatible if they have the same value for the units attribute.

| The following examples illustrate these rules.
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nature Voltage;
access = V;

units = "V";
abstol = 1lu;
endnature

nature Current;
access = I;

units = "A";
abstol = 1p;
endnature

nature highvoltage: Voltage;
abstol = 1.0;
endnature

discipline electrical;
potential Voltage;
flow Current;

enddiscipline

discipline highvolt;
potential highvoltage;
flow Current;

enddiscipline

discipline sig flow v;
potential Voltage;
enddiscipline

discipline sig flow i;
flow Current;
enddiscipline

nature Position;
access = X;

units = "m";
abstol = lu;
endnature

nature Force;
access = F;

units = "N";
abstol = 1n;
endnature

discipline rotational;
potential Position;
flow Force;

enddiscipline

discipline sig flow x;
potential Position;
enddiscipline

discipline sig flow f;
flow Force;
enddiscipline

discipline domainless;
enddiscipline

discipline ddiscrete;
domain discrete;
enddiscipline

discipline natureless;
domain continuous;
enddiscipline

discipline continuous elec;
domain continuous;
potential Voltage;
flow Current;
enddiscipline

The following compatibility observations can be made from the above examples:

Voltage and highvoltage are compatible natures because they both exist and are derived from
the same base natures.

electrical and highvolt are compatible disciplines because the natures for both potential and
flow exist and are derived from the same base natures.

electrical and sig flow_ v are compatible disciplines because the nature for potential is same
for both disciplines and the nature for flow does not exist in sig flow v.

electrical and rotational are incompatible disciplines because the natures for both potential
and flow are not derived from the same base natures.

electrical and sig flow_ x are incompatible disciplines because the nature for both potentials
are not derived from the same base nature.
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—  The natureless discipline natureless is compatible with all other disciplines of the same domain
(i.e continuous) because it does not have a potential or a flow nature. Without natures, there can be
no conflicting natures.

— domainless is compatible with all other disciplines from the domainless discipline rule.

— electrical and ddiscrete are incompatible disciplines because the domains are different. A
connect statement must be used to connect nets or ports of these disciplines together.

— electrical and continuous_elec are compatible disciplines because the default domain for
discipline electrical is continuous and the specified natures for potential and flow are the same.

3.12 Branches

A branch is a path between two nets. If both nets are conservative, then the branch is a conservative branch
and it defines a branch potential and a branch flow. If one net is a signal-flow net, then the branch is a signal-
flow branch and it defines either a branch potential or a branch flow, but not both.

Each branch declaration is associated with two nets from which it derives a discipline. These nets are
referred to as the branch terminals. Only one net need be specified, in which case the second net defaults to
ground and the discipline for the branch is derived from the specified net. The disciplines for the specified
nets shall be compatible (see 3.11).

Branches can either be explicitly or implicitly declared. Explicitly declared branches are referred to as
named branches. The syntax for declaring named branches is shown in Syntax 3-9. Unnamed branches are
created by applying an access function (see 4.4 and 5.4.1) to either a net or a pair of nets. If the access func-
tion is applied to a single net, then the branch is formed between that net and the global reference node
(ground). If it is applied to a pair of nets, the branch is formed between the two nets. There shall be at most
one unnamed branch between any two nets or between a net and implicit ground (in addition to any number
of named branches).

branch_declaration ::= // from A.2.1.3
branch ( branch terminal [ , branch terminal | ) list of branch identifiers ;
| port_branch_declaration

port_branch declaration ::=
branch (< port identifier > ) list of branch identifiers ;
| branch ( < hierarchical port identifier > ) list of branch identifiers ;

branch_terminal ::=
net identifier
| net identifier [ constant expression ]
| net identifier [ constant range expression ]
| hierarchical net identifier
| hierarchical net identifier [ constant expression ]
| hierarchical net identifier [ constant range expression ]

list of branch identifiers ::= // from A.2.3
branch_identifier [ range | { , branch_identifier [ range | }

Syntax 3-9—Syntax for branch declaration

If one of the terminals of a branch is a vector net, then the other terminal shall either be a scalar net or a vec-
tor net of the same size. In the latter case, the branch is referred to as a vector branch. When both terminals
are vectors, the scalar branches that make up the vector branch connect to the corresponding scalar nets of
the vector terminals, as shown in Figure 3-1.
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Figure 3-1: Two vector terminals

When one terminal is a vector and the other is a scalar, a singular scalar branch connects to each scalar net in
the vector terminal and each terminal of the vector branch connects to the scalar terminal, as shown in

Figure 3-2.
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Figure 3-2: One vector and one scalar terminal

If the range of the vector branch is not specified then the indexing of the vector branch shall start at 0. For
example:

electrical [3:5]a;
electrical [1:3]b;
branch (a,b) brl; // Branch brl is of size 3 and can be indexed from 0 to 2

3.12.1 Port Branches

A port branch is a special type of branch used to access the flow into a port of a module (see 5.4.3). Itis a
branch between the upper and lower connections of the port. A port branch is a scalar branch if the port iden-
tifier is a scalar port. A port branch is a vector branch if the port identifier is a vector port.

Example:
module current sink(p);
electrical p;
branch (<p>) probe p;
analog
$strobe ("current probed is %g", I (probe p));
endmodule
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3.13 Namespace

The following subsections define the namespace.

3.13.1 Nature and discipline

Natures and disciplines are defined at the same level of scope as modules. Thus, identifiers defined as
natures or disciplines have a global scope, which allows nets to be declared inside any module in the same
manner as an instance of a module.

3.13.2 Access functions

Each access function name, defined before a module is parsed, is automatically added to that module’s name
space unless there is another identifier defined with the same name as the access function in that module’s
name space. Furthermore, the access function of each base nature shall be unique.

3.13.3 Net

The scope rules for net identifiers are the same as the scope rules for any other identifier declarations, except
nets can not be declared anywhere other than in the port of a module or in the module itself. A net can only

be declared inside a module scope; a net can not be declared local to a block.

Access functions are uniquely defined for each net based on the discipline of the net. Each access function is
used with the name of the net as its argument and a net can only be accessed through its access functions.

The hierarchical reference character (.) can be used to reference a net across the module boundary accord-
ing to the rules specified in IEEE Std 1364 Verilog.

3.13.4 Branch

The scope rules for branch identifiers are the same as the scope rules for net identifiers. A branch can only
be declared inside a module scope; a branch can not be declared local to a block.

Access functions are uniquely defined for each branch based on the discipline of the branch. The access
function is used with the name of the branch as its argument and a branch can only be accessed through its
access functions.

The hierarchical reference character (.) can be used to reference a branch across the module boundary
according to the rules specified in IEEE Std 1364 Verilog.
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4. Expressions

4.1 Overview

This section describes the operators and operands available in the Verilog-AMS HDL, and how to use them
to form expressions.

An expression is a construct which combines operands with operators to produce a result which is a func-
tion of the values of the operands and the semantic meaning of the operator. Any legal operand, such as an
integer or an indexed element from an array of reals, without a operator is also considered an expression.
Wherever a value is needed in a Verilog-AMS HDL statement, an expression can be used.

Some statement constructs require an expression to be a constant expression. The operands of a constant
expression consists of constant numbers and parameter names, but they can use any of the operators defined
in Table 4-1, Table 4-14, and Table 4-15.

4.2 Operators

The symbols for the Verilog-AMS HDL operators are similar to those in the C programming language.
Table 4-1 lists these operators.

Table 4-1—Operators

Concatenation, replication

&

unary +, unary -

Unary operators

+ ok k%

Arithmetic

%

Modulus

> >= < <=

Relational

Logical negation

&&

Logical and

Logical or

Logical equality

Logical inequality

Case equality

Case inequality

Bitwise negation

Bitwise and

Bitwise inclusive or

Bitwise exclusive or

Bitwise equivalence

Reduction and

Reduction nand

Reduction or
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Table 4-1—Operators (continued)

~ Reduction nor

" Reduction xor

~"or "~ Reduction xnor

<< Logical left shift

>> Logical right shift
<<< Arithmetic left shift
>>> Arithmetic right shift
7 Conditional

4.2.1 Operators with real operands

The operators shown in Table 4-2 are legal when applied to real operands. All other operators are considered
illegal when used with real operands.

Table 4-2—L egal operators for use in real expressions

unary + unary - | Unary operators
+ - F/ wE Arithmetic

% Modulus

> >= < <= Relational

= I= Logical equality
I && || Logical

7 Conditional

The result of using logical or relational operators on real numbers is an integer value 0 (false) or 1 (true).

If a real expression is used for the replication factor of a concatenation, the expression will first be converted
to an integer value using the rules described in 4.2.1.1, before it is used as the replication factor for the con-
catenation.

4.2.1.1 Real to integer conversion

Real numbers are converted to integers by rounding the real number to the nearest integer, rather than by
truncating it. Implicit conversion takes place when a real number is assigned to an integer. If the fractional
part of the real number is exactly 0.5, it shall be rounded away from zero.

Examples:

The real numbers 35.7 and 35.5 both become 36 when converted to an integer and 35.2 becomes 35.

Converting -1.5 to integer yields -2, converting 1.5 to integer yields 2.
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4.2.1.2 Integer to real conversion

Implicit conversion shall take place when an expression is assigned to a real. Individual bits that are x or z in
the net or the variable shall be an error (see 7.3.2).

4.2.1.3 Arithmetic conversion

For operands, a common data type for each operand is determined before the operator is applied. If either
operand is real, the other operand is converted to real. Implicit conversion takes place when a integer num-
ber is used with a real number in an operand.

Examples:

a=3+ 5.0;

The expression 3 + 5.0 is evaluated by “casting” the integer 3 to the real 3.0, and the result of the
expression is 8.0.

b=11/2;

The above is integer division and the result is 0.

c=8.0+ (1/2);

(1/2) is treated as integer division, but the result is cast to a real (0.0) during the addition, and the
result of the expression is 8.0.
d=1/ 2.0;
Since the denominator is expressed as a real number (2.0) the above is treated as real division and
the result is 0.5;
4.2.2 Operator precedence

The precedence order of operators is shown in Table 4-3.

Table 4-3—Precedence rules for operators

+-1~ & ~& | ~| » ~ "~ (unary) Highest precedence
ks

* 1 %

+ - (binary)

<< > <L >>>

& (bitwise)

N A~ <N (bitwise)

| (bitwise)

&& v

|| (logical) or (event) , (event)
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Table 4-3—Precedence rules for operators (continued)

?: (conditional operator)

O {4 Lowest precedence

Operators shown on the same row in Table 4-3 have the same precedence. Rows are arranged in order of
decreasing precedence for the operators. For example, *, /, and % all have the same precedence, which is
higher than that of the binary + and - operators.

All operators associate left to right with the exception of the conditional operator which associates right to
left. Associativity refers to the order in which the operators having the same precedence are evaluated.

In the following example B is added to A and then C is subtracted from the result of A+B.
A+B-C
When operators differ in precedence, the operators with higher precedence associate first.

In the following example, B is divided by C (division has higher precedence than addition) and then the
result is added to A.

A+B/C
Parentheses can be used to change the operator precedence.

(A + B) / C // not the same as A + B / C
4.2.3 Expression evaluation order

The operators shall follow the associativity rules while evaluating an expression as described in 4.2.2. Some
operators (&&, | |, and 2:) shall use short-circuit evaluation; in other words, some of their operand expres-
sions shall not be evaluated as long as the expression contains no analog operators and their value is not
required to determine the final value of the operation. All other operators shall not use short-circuit evalua-
tion - all of their operand expressions are always evaluated. When short circuiting occurs, any side effects or
runtime errors that would have occurred due to evaluation of the short-circuited operand expression shall not
occur.

Example 1 - All operand expressions being evaluated:

integer varA, varB, varC, result;
analog function integer myFunc;

endfunction
result = varA & (varB | myFunc(varC));

Even if vara is known to be zero, the subexpression (varB | myFunc (varC)) will be evaluated and any
side effects caused by calling myFunc (varc) will occur.

Example 2 - Short-circuiting being applied:

integer varA, varB, varC, result;
result = varA && (varB || wvarC);
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If vara is known to be zero (0), the result of the expression can be determined as zero (0) without evaluating

the sub-expression (varB || varC).

Note that implementations are free to optimize by omitting evaluation of subexpressions as long as the sim-
ulation behavior (including side effects) is as if the standard rules were followed.

4.2.4 Arithmetic operators
Table 4-4 shows the binary arithmetic operators.

Table 4-4—Arithmetic operators defined

atb aplusb

a—b aminus b

a*b a multiply by b
al/b adivide by b
a%b amodulo b
a**p ato power of b

Integer division truncates any fractional part toward zero (0).

The unary arithmetic operators take precedence over the binary operators. Table 4-5 shows the unary opera-
tors.

Table 4-5—Unary operators defined

+m Unary plus m (same as m)

-m Unary minus m

The modulus operator, (for example a % b), gives the remainder when the first operand is divided by the
second, and thus is zero (0) when b divides a exactly. The result of a modulus operation takes the sign of the

first operand.

It shall be an error to pass zero (0) as the second argument to the modulus operator.

For the case of the modulus operator where either argument is real, the operation performed is:
a %$ b= ((a/b) <0) ? (a - ceil(a/b)*b) : (a - floor(a/b)*b);

Table 4-6 gives examples of modulus operations.

Table 4-6—Examples of modulus operations

Modulus expression Result Comments
11%3 2 11/3 yields a remainder of 2.
12% 3 0 12/3 yields no remainder.
-10% 3 -1 The result takes the sign of the first operand.
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Table 4-6—Examples of modulus operations (continued)

Modulus expression Result Comments
11%-3 2 The result takes the sign of the first operand.
10 % 3.75 2.5 [10 - floor(10/3.75)*3.75 ] yields a remainder of 2.5.

4.2.5 Relational operators
Table 4-7 lists and defines the relational operators.

Table 4-7—The relational operators defined

a<b aless than b

a>b a greater than b

a<=b a less than or equal to b
a>=b a greater than or equal to b

An expression using these relational operators yields the value zero (0) if the specified relation is false or
the value one (1) if it is true.

All the relational operators have the same precedence. Relational operators have lower precedence than
arithmetic operators.

The following examples illustrate the implications of this precedence rule:

a < foo -1 // this expression is the same as
a < (foo - 1) // this expression, but
foo - (1 < a) // this one is not the same as
foo - 1 < a // this expression
When foo - (1 < a) is evaluated, the relational expression is evaluated first and then either zero (0) or

one (1) is subtracted from foo. When foo - 1 < a is evaluated, the value of foo operand is reduced by
one (1) and then compared with a.

4.2.6 Case equality operators

The case equality operators share the same level of precedence as the logical equality operators. These
operators have limited support in the analog block (see 7.3.2). Additional information on these operators
can also be found in the IEEE Std 1364 Verilog.

4.2.7 Logical equality operators

The logical equality operators rank lower in precedence than the relational operators. Table 4-8 lists and
defines the equality operators.

Table 4-8—The equality operators defined

a == aequaltob
a 1=b anotequaltob
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Both equality operators have the same precedence. These operators compare the value of the operands. As
with the relational operators, the result shall be zero (0) if comparison fails, one (1) if it succeeds.

4.2.8 Logical operators

The operators logical and (&) and logical or (| |) are logical connectives. The result of the evaluation of a
logical comparison can be one (1) (defined as #rue) or zero (0) (defined as false). The precedence of «& is
greater than that of | | and both are lower than relational and equality operators.

A third logical operator is the unary logical negation operator (! ). The negation operator converts a non-zero
or true operand into zero (0) and a zero or false operand into one (1).

The following expression performs a logical and (ss&) of three sub-expressions without needing any paren-
theses:

a < paraml && b != ¢ && index != lastone

However, parentheses can be used to clearly show the precedence intended, as in the following rewrite of the
above example:

(a < paraml) && (b != c¢) && (index != lastone)
4.2.9 Bitwise operators
The bitwise operators perform bitwise manipulations on the operands—that is, the operator combines a bit

in one operand with its corresponding bit in the other operand to calculate one bit for the result. The follow-
ing logic tables (Table 4-9 — Table 4-13) show the results for each possible calculation.

Table 4-9—Bitwise binary and operator

& 0 1
0 0 0
1 0 1

Table 4-10—Bitwise binary or operator

| 0 1
0 0 1
1 1 1

Table 4-11—Bitwise binary exclusive or operator

A 0 1

0 0 1

1 1 0
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Table 4-12—Bitwise binary exclusive nor operator

A

A 0 1
0 1 0
1 0 1

Table 4-13—Bitwise unary negation operator

When one or both operands are unsigned. the expression shall be interpreted as a comparison between
unsigned values. If the operands are of unequal bit lengths, the smaller operand shall be zero-extended to the
size of the larger operand.

When both operands are signed, the expression shall be interpreted as a comparison between signed values.
If the operands are of unequal bit lengths, the smaller operand shall be sign-extended to the size of the larger
operand.

4.2.10 Reduction operators

The reduction operators can not be used inside the analog block and only have meaning when used in the
digital context. Information on these operators can also be found in the IEEE Std 1364 Verilog.

4.2.11 Shift operators

There are two types of shift operators: the logical shift operators, << and >>, and the arithmetic shift opera-
tors, <<< and >>>. The arithmetic shift operators can not be used in an analog block. Further information
on these operators can be found in IEEE Std 1364 Verilog. The logical shift operators, << and >>, perform
left and right shifts of their left operand by the number of bit positions given by the right operand. Both the
<< and >> shift operators fill the vacated bit positions with zeroes (0).The right operand is always treated as
an unsigned number and has no effect on the signedness of the result.

Examples:

integer start, result;
analog begin

start = 1;

result = (start << 2);
end

In this example, the integer result is assigned the binary value 0100, which is 0001 shifted to the
left two positions and zero-filled.

integer start, result;
analog begin

start = 3;

result = (start >> 1);
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end

In this example, the integer result is assigned the binary value 0001, which is 0011 shifted to the
right one position and zero-filled.

4.2.12 Conditional operator

The conditional operator, also known as ternary operator, is right associative and shall be constructed using
three operands separated by two operators, as shown in Syntax 4-1.

conditional expression ::= // from A.8.3
expressionl ? { attribute_instance } expression2 : expression3

Syntax 4-1—Syntax for conditional operator

The evaluation of a conditional operator begins with the evaluation of expressionli. If expressionl evaluates
to false (0), then expression3 is evaluated and used as the result of the conditional expression. If expressionl
evaluates to true (any value other than zero (0)), then expression?2 is evaluated and used as the result.

4.2.13 Concatenations

A concatenation is the result of the joining together of bits resulting from one or more expressions into a sin-
gle value. The concatenation shall be expressed using the brace characters { and }, with commas separating
the expressions within. It should not be confused with the assignment pattern ' { } which is used in Ver-
ilog-AMS to specify literal lists of constants and expressions for purposes such as the assignment of array
initializers and coefficient arguments to the Laplace analog filters. Confusion can arise because { } is used
to describe lists of values for array initialization in the C language whereas it means something very differ-
ent (concatenation) in the Verilog HDL and Verilog-AMS HDL languages.

Unsized constant numbers shall not be allowed in concatenations. This is because the size of each operand in
the concatenation is needed to calculate the complete size of the concatenation.

This example concatenates two expressions:
{1'bl, 3'bl01}
It is equivalent to the following example:
{1'bl, 1'bl, 1'b0, 1'bl}
Its value is 4'b1101.
The next example concatenates three strings:
{ "hello", " ", "world" }
Its value is "hello world".
An operator that can be applied only to concatenations is replication, which is expressed by a concatenation
preceded by a non-negative, non-x and non-z constant expression, called a replication constant, enclosed
together within brace characters, and which indicates a joining together of that many copies of the concate-

nation. Unlike regular concatenations, expressions containing replications shall not appear on the left-hand
side of an assignment and shall not be connected to output or inout ports.
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The following example replicates w four times:
{4{w}} // This yields the same value as {w, w, w, W}
The next example illustrates a replication nested within a concatenation:

{b, {3{a, b}}} // This yields the same value as
// {b, a, b, a, b, a, b}

A replication operation may have a replication constant with a value of zero. This is useful in parameterized
code. A replication with a zero replication constant is considered to have a size of zero and is ignored. Such
a replication shall appear only within a concatenation in which at least one of the operands of the concatena-
tion has a positive size. For example:

parameter P = 32;

// The following is legal for all P from 1 to 32
assign b[31:0] = { {32-P{1'bl}}, al[P-1:01 };

// The following is illegal for P=32 because the zero
// replication appears alone within a concatenation
assign c[31:0] = { {{32-P{1'bl}}}, al[P-1:0] };

// The following is illegal for P=32

initial

$displayb ({32-P{1'bl}}, a[P-1:0]);

When a replication expression is evaluated, the operands shall be evaluated exactly once, even if the replica-
tion constant is zero. For example:

result = {4{func(w)}} ;
would be computed as:

y = func(w) ;
result = {y, y, v, v} 7

4.2.14 Assignment patterns

The assignment pattern ' { 1}, is the way to specify lists of expressions of particular type in Verilog-AMS
during assignments, particularly array assignments. It is a feature imported from the IEEE Std 1800 System-
Verilog language.

assignment_pattern ::= // from A.8.1
' { expression { , expression } }
| '{ constant_expression { expression { , expression } } }

constant assignment pattern ::=
' { constant_expression { , constant_expression } }
| '{ constant_expression { constant expression { , constant expression } } }

Syntax 4-2—Syntax for assignment pattern

In the example below, a real array is initialized using an assignment pattern
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parameter real datal[0:4] = '{3.4, 5.6, 2.3, 4.5, 7.1};

In the example below, a real array variable is initialized using an assignment pattern. The example also uses
a replication operator to repeat 0.0 five times so that every element of data2 is assigned to 0.0.

parameter real data2[0:4] = '{ 5{0.0} };

The example below assigns the array measurements in the analog block using an assignment pattern com-
posed of three variables; a, b, c.

real measurements[0:2];
real a,b,c;
analog begin

measurements = '{a,b,c};

Here are the contexts in Verilog-AMS where an array assignment pattern is allowed;
— Analog operator arguments which are expected to be of type array (see 4.5.1)
— The data_source argument of the $table model system task
—  Parameter array assignment in an instantiation
— The RHS of an array variable or array parameter default assignment
—  The RHS of an array variable assignment

— Array arguments in calls to user-defined functions

IEEE Std 1800 SystemVerilog has additional uses for the assignment pattern beyond array assignments.
IEEE Std 1800 SystemVerilog disallows the usage of the assignment pattern in particular contexts e.g. argu-
ments to system tasks: $Smy system task('{4.2,5.1,6.3} ). Verilog-AMS also adopts these restric-
tions. IEEE Std 1800 SystemVerilog should be consulted for a more detailed understanding of these
restrictions.

4.3 Built-in mathematical functions

Verilog-AMS HDL supports both the standard and transcendental mathematical functions. Both the IEEE
Std 1364 Verilog system function syntax style and the traditional Verilog-AMS HDL style are supported.
Users are encouraged to adopt the IEEE Std 1364 Verilog system function style when using the mathemati-
cal functions but the traditional Verilog-AMS HDL style will continue to be supported for backwards com-
patibility. The following tables Table 4-14 and Table 4-15 show both syntax styles as well as the equivalent
C function.

4.3.1 Standard mathematical functions

The standard mathematical functions supported by Verilog-AMS HDL are shown in Table 4-14. The oper-
| ands shall be numeric (integer or real). Formin (), and max (), if both operands are integer, then the result
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is an integer, else both operands are converted to real, as is the result.For abs (), if the operand is an inte-
ger, then the result is an integer, else the result is real. All other arguments are converted to real.

Table 4-14—Standard functions

Verilo Traditional Equivalent C
rrog Verilog-AMS q . Description Domain
function style . function
function style
$1n(x) 1n(x) log(x) Natural logarithm x>0
$1nlp(x) 1nlp(x) loglp(x) Natural logarithm of 1 plusx | x> -1
$1ogl0(x) log(x) logl0(x) Decimal logarithm x>0
Sexp(x) exp(x) exp(x) Exponential All x
Sexpml(x) expml(x) expml(x) Exponential minus 1 All x
$sqrt(x) sqrt(x) sqrt(x) Square root x>=0
$min(x,y) min(x, y) fmin(x,y) Minimum All x, all y
$max(x,y) max(x, y) fmax(x,y) Maximum All x, all y
$abs(x) abs(x) fabs(x) Absolute All x
Spow(x,y) pow(x, y) pow(x,y) Power () ifx>0,all y;
ifx=0,y>0;
if x <0,all integer y
$floor(x) floor(x) floor(x) Floor All x
$ceil(x) ceil(x) ceil(x) Ceiling All x

The min (), max (), and abs () functions have discontinuous derivatives; it is necessary to define the
behavior of the derivative of these functions at the point of the discontinuity. In this context, these functions
are defined so:

min (x,y) isequivalentto (x < y) 2 x : y
max (x,y) isequivalentto (x > y) ? x : vy

abs (x) isequivalentto (x > 0) x : -x

The 1nlp(x) function returns the natural logarithm of one plus x: 1n(I+x). For small magnitude values of
%, 1nlp(x) can be more accurate than 1n(I +x).

The expml(x) function returns the exponential raised to the power x minus one: e*-1. For small magnitude
values of x, expm1(x) can be more accurate than exp(x)-/.

4.3.2 Transcendental functions

The trigonometric and hyperbolic functions supported by Verilog-AMS HDL are shown in Table 4-15. All
operands shall be numeric (integer or real) and are converted to real if necessary. Arguments to the trigono-
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metric functions (sin, cos, tan) and return values of the inverse trigonometric functions (asin, acos,
atan, atan2) are in radians. Input values outside of the valid range for the operator shall report an error.

Table 4-15—Trigonometric and hyperbolic functions

Verilog function Vj;l;iill((i)igtioAI;\?[lS Equival.e nt C Description Domain
style function style function
$sin(x) sin(x) sin(x) Sine All x
$cos(x) cos(x) cos(x) Cosine All x
$tan(x) tan(x) tan(x) Tangent x!=n(n/2),nisodd
$asin(x) asin(x) asin(x) Arc-sine Al<=x<=1
$Sacos(x) acos(x) acos(x) Arc-cosine Al<=x<=1
$atan(x) atan(x) atan(x) Arc-tangent All x
$atan2(yyx) atan2(yyx) atan2(yyx) Arc-tangent of y/x Allx, all y;
atan2(0,0)=0
$Shypot(x,y) hypot(x,y) hypot(xy) m All x, all y
$sinh(x) sinh(x) sinh(x) Hyperbolic sine All x
$cosh(x) cosh(x) cosh(x) Hyperbolic cosine All x
$tanh(x) tanh(x) tanh(x) Hyperbolic tangent All x
$asinh(x) asinh(x) asinh(x) Arc-hyperbolic sine All x
$acosh(x) acosh(x) acosh(x) Arc-hyperbolic cosine x>=1
$atanh(x) atanh(x) atanh(x) Arc-hyperbolic tangent | -1 <x<1

4.4 Signal access functions

Access functions are used to access signals on nets, ports, and branches. There are two types of access func-
tions, branch access functions and port access functions. The name of the access function for a signal is
taken from the discipline of the net, port, or branch where the signal or port is associated and utilizes the ()
operator. A port access function also takes its name from the discipline of the port to which it is associated
but utilizes the port access (< >) operator.

As an alternative to using the access attribute specified in the discipline, the generic potential and £low
access functions are also supported (see 5.5.1).

If the signal or port access function is used in an expression, the access function returns the value of the sig-
nal. If the signal access function is being used on the left side of a branch assignment or contribution state-
ment, it assigns a value to the signal. A port access function can not be used on the left side of a branch
assignment or contribution statement.

Table 4-16 shows how access functions can be applied to branches, nets, and ports. In this table, b/ refers to
a branch, n/ and n2 represent either nets or ports, and p/ represents a port. These branches, nets, and ports
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are assumed to belong to the electrical discipline, where ¥ is the name of the access function for the voltage
(potential) and 7 is the name of the access function for the current (flow).

Table 4-16—Access functions examples

Example Comments
V(bl) Accesses the voltage across branch b/
potential (bl) Alternative access of the voltage across the branch b/
V(nl) Accesses the voltage of n/ (a net or a port) relative to ground
V(nl,n2) Accesses the voltage difference between n/ and n2 (nets or ports)
V(nl,nl) Error
I(bl) Accesses the current flowing in branch b/
I(nl) Accesses the current flowing in the unnamed branch from #/ to ground
flow(nl) Alternative access of the current flowing in the unnamed branch from n/

to ground

I(nl,n2) Accesses the current flowing in the unnamed branch between n/ and n2
I(nl,nl) Error
I(<pl>) Accesses the current flow into the module through port p/

The argument expression list for signal access functions shall be a branch identifier, or a list of one or two
nets or port expressions. If two net expressions are given as arguments to a flow access function, they shall
not evaluate to the same signal. The net identifiers shall be scalar or resolve to a constant net of a composite
net type (array or bus) accessed by a genvar expression. If only one net expression is given as the argument
to a signal access function, it is implicitly assumed that the second terminal of that unnamed branch is
ground.

The operands of an expression shall be unique to define a valid branch. The access function name shall
match the discipline declaration for the nets, ports, or branch given in the argument expression list. In this
case, vV and T are used as examples of access functions for electrical potential and flow.

For port access functions, the expression list is a single port of the module. The port identifier shall be scalar
or resolve to a constant net of a bus port accessed by a genvar expression. The access function name shall
match the discipline declaration for the port identifier.

4.5 Analog operators

Analog operators are functions which operate on more than just the current value of their arguments.
Instead, they maintain their internal state and their output is a function of both the input and the internal
state.

Analog operators are also referred to as analog filter functions. They include the time derivative, time inte-
gral, and delay operators from calculus. They also include the transition and slew filters, which are used to
remove discontinuity from piecewise constant and piecewise continuous waveforms. Finally, they include
more traditional filters, such as those described with Laplace and Z-transform descriptions.

One special analog operator is the 1imexp () function, which is a version of the exp () function with
built-in limits to improve convergence.
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The syntax for the analog operators is shown in Syntax 4-3.

analog_filter function call ::= // from A.8.2
ddt ( analog_expression [ , abstol expression | )
ddx ( analog expression , branch probe function call )
idt (analog expression [ , analog expression [ , analog expression [ , abstol expression]]])
idtmod ( analog expression [ , analog expression [ , analog_expression [ , analog_expression
[ , abstol expression]]]])
absdelay ( analog expression , analog expression [ , constant expression ] )
transition ( analog expression [ , analog expression [ , analog expression
[ , analog_expression [ , constant_expression | ]]])
slew ( analog expression [ , analog expression [ , analog_expression | ] )
last_crossing ( analog_expression [ , analog_expression ] )
limexp ( analog expression )
laplace filter name ( analog_expression , [ analog_filter function arg] ,
[ analog_filter function arg ][ , constant expression | )
| zi_filter name ( analog expression , [ analog_filter function arg] ,
[ analog_filter function arg ] , constant expression
[ , analog_expression [ , constant_expression | ] )

analog_filter function_arg ::=
parameter_identifier
| parameter_identifier [ msb_constant _expression : Isb_constant_expression ]
| constant_assignment pattern_or_null

Syntax 4-3—Syntax for the analog operators

4.5.1 Vector or array arguments to analog operators

Certain analog operators require arrays or vectors to be passed as arguments: Laplace filters, Z-transform fil-
ters, noise_table () and noise_table log (). An array can either be passed as an array_identifier
(e.g. an array parameter or an array variable) or an array assignment pattern (see 4.2.14).

4.5.2 Analog operators and equations

Generally, simulators formulate the mathematical description of the system in terms of first-order differen-
tial equations and solve them numerically. There is no direct way to solve a set of nonlinear differential
equations so iterative approaches are used. When using iterative approaches, some criteria (folerances) is
needed to determine when the algorithm knows when it is close enough to the solution and then stops the
iteration. Thus, each equation, at a minimum, shall have a tolerance defined and associated with it.

Occasionally, analog operators require new equations and new unknowns be introduced by the simulator to
convert a module description into a set of first-order differential equations. In this case, the simulator
attempts to determine from context which tolerance to associate with the new equation and new unknown.
Alternatively, these operators can be used to specify tolerances.

Specifying natures also directly enforces reusability and allows other signal attributes to be accessed by the
simulator.
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4.5.3 Time derivative operator

The ddt operator computes the time derivative of its argument, as shown in Table 4-17.

Table 4-17—Time derivative

Operator

Comments

ddt(expr)

d
Returns & x(7),
e rnsdtx()

the time-derivative of x, where x is expr.

ddt(expr, abstol)

Same as above, except absolute tolerance is specified explicitly.

ddt(expr, nature) Same as above, except nature is specified explicitly.

In DC analysis, ddt () returns zero (0). The optional parameter abstol is used as an absolute tolerance if
needed. Whether an absolute tolerance is needed depends on the context where ddt () is used. See 4.5.2 for
more information on the application of tolerances to equations. The absolute tolerance, abstol or derived
from nature, applies to the output of the ddt operator and is the largest signal level that is considered negli-

gible.

4.5.4 Time integral operator

The idt operator computes the time-integral of its argument, as shown in Table 4-18.

Table 4-18—Time integral

Operator Comments
idt(expr) Returns ﬁ x(t)dt + ¢,
0
where x(t) is the value of expr at time 1, ¢, is the start time of the simulation, ¢ is
the current time, and c is the initial starting point as determined by the simulator
and is generally the DC value (the value that makes expr equal to zero).
idt(expr,ic) Returnsj; x(t)dt + ¢,
0

where in this case c is the value of ic at ¢.

idt(expric,assert)

Returns J‘i

a

x(t)dt + ¢,

where c is the value of ic at ,, which is the time when assert was last nonzero or ¢,
if assert was never nonzero.

idt(expric,assert,abstol)

Same as above, except the absolute tolerance used to control the error in the
numerical integration process is specified explicitly with abstol.

idt(expric,assert,nature)

Same as above, except the absolute tolerance used to control the error in the
numerical integration process is taken from the specified nature.

When used in DC or IC analyses, idt () returns the initial condition (ic) if specified. If not specified, the idt
operator must be contained within a negative feedback loop that forces its argument to zero. Otherwise the

output of the idt operator is undefined.
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When specified with initial conditions but without assert, idt () returns the value of the initial condition on
the initial point of a transient analysis. When specified with both initial conditions and assert, idt ()
returns the initial conditions during DC and IC analyses, and whenever assert is nonzero. Once assert
becomes zero, idt () returns the integral of the argument starting from the last instant where assert was
nonzero.

The optional parameter abstol or nature is used to derive an absolute tolerance if needed. Whether an abso-
lute tolerance is needed depends on the context where idt () is used. (See 4.5.2 for more information.) The
absolute tolerance applies to the input of the idt operator and is the largest signal level that is considered
negligible.

A simple example that demonstrates the first form is a simple model for an opamp.

module opamp (out, pin, nin);
output out;
input pin, nin;
voltage out, pin, nin;
analog
V(out) <+ idt(V(pin,nin));
endmodule

Here the opamp is simply modeled as an integrator. In this case the initial condition for the integrator is
found by the simulator, generally the DC operating point is used. For the DC operating point to exist for an
integrator that does not have an initial condition explicitly specified, the integrator must exist within a nega-
tive feedback loop that drives its argument to 0. Forcing the output of the integration operator to be a partic-
ular value at start of the simulation using something like

V(out) <+ idt(V(pin,nin), 0);
avoids this issue.

Using the assert argument, the output of the integration operator can be reset to a given value at any time.
This feature is demonstrated in the following model, which uses the idt () operator to generate a periodic
ramp waveform:

module ramp generator (out);
output out;
voltage out;
integer reset;
analog begin
reset = 0;
@ (timer (1, 1))
reset = 1;
V(out) <+ idt(1.0, 0, reset);
end
endmodule

| The output of this model is shown in Figure 4-3. Notice that in this model the reset occurs instantaneously.
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Figure 4-3: The output from the ramp generator

4.5.5 Circular integrator operator

The idtmod operator, also called the circular integrator, converts an expression argument into its indefi-
nitely integrated form similar to the idt operator, as shown in Table 4-19.

Table 4-19—Circular integrator

Operator Comments

idtmod(expr) Returns J.; x(t)dt +c,
0

where x(1) is the value of expr at time 7, ¢ is the start time of the simu-
lation, # is the current time, and c is the initial starting point as deter-
mined by the simulator and is generally the DC value (the value that
makes expr equal to zero).

idtmod(expr,ic) Returns Ji x(t)dt +c,
0

where in this case c is the value of ic at ¢,

idtmod(expric,modulus) Returns k&, where 0 < k < modulus and k is
Ji x(t)dt+c = nxmodulus +k,n=..-3,-2,-1,0,1,2,3 ...,
0

and c is the value of ic at ¢;.

idtmod(expric,modulus,offset) Returns &, where offset < k < offset + modulus, k is
ﬁ x(t)dt+c = nxmodulus +k ,
0

and c is the value of ic at ¢.
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Table 4-19—Circular integrator (continued)

Operator Comments

idtmod(expric,modulus,offset,abstol) | Same as above, except the absolute tolerance used to control the error in
the numerical integration process is specified explicitly with abstol.

idtmod(expric,modulus,offset, nature) | Same as above, except the absolute tolerance used to control the error in
the numerical integration process is taken from the specified nature.

The initial condition is optional. If the initial condition is not specified, it defaults to zero (0). Regardless,
the initial condition shall force the DC solution to the system.

If idtmod () is used in a system with feedback configuration which forces expr to zero (0), the initial con-
dition can be omitted without any unexpected behavior during simulation. For example, an operational
amplifier alone needs an initial condition, but the same amplifier with the right external feedback circuitry
does not need a forced DC solution.

The output of the idtmod () function shall remain in the range

offset <= idtmod < offset+modulus

The modulus shall be an expression which evaluates to a positive value. If the modulus is not specified,
then idtmod () shall behave like idt () and not limit the output of the integrator.

The default for of fset shall be zero (0).

The following relationship between idt () and idtmod () shall hold at all times.

If

y = idt (expr, ic);

z = idtmod (expr, ic, modulus, offset);
then

y = n * modulus + z; // n is an integer
where

offset £ z < modulus + offset

In this example, the circular integrator is useful in cases where the integral can get very large, such as a
VCO. In a VCO, only the output values in the range [0,27] are of interest, e.g.,

phase = idtmod(fc + gain*Vv(in), 0, 1, 0);
V(OUT) <+ sin(2*‘M PI*phase);

Here, the circular integrator returns a value in the range [0,1].
4.5.6 Derivative operator
ddx () provides access to symbolically-computed partial derivatives of expressions in the analog block.

The analog simulator computes symbolic derivatives of expressions used in contribution statements in order
to use Newton-Raphson iteration to solve the system of equations. In many cases in compact modeling, the

69
Copyright © 2023 Accellera Systems Initiative. All rights reserved.



Accellera Std VAMS-2023 Draft
Accellera Standard for VERILOG-AMS - Analog and Mixed-signal Extensions to Verilog HDL

values of these derivatives are useful quantities for design, such as the trans conductance of a transistor (gm)
or the capacitance of a nonlinear charge-storage element such as a varactor. The syntax for this operator is
shown in Syntax 4-3.

The general form for the ddx () operator is:

ddx ( expr , unknown_quantity )

where:
—  expr is the expression for which the symbolic derivative needs to be calculated.

— unknown_quantity is the branch probe (voltage or current probe) with respect to which the deriva-
tive of the expression needs to be computed.

The operator returns the partial derivative of its first argument with respect to the unknown indicated by the
second argument, holding all other unknowns fixed and evaluated at the current operating point. The second
argument shall be the potential of a scalar net or port or the flow through a branch, because these are the
unknown variables in the system of equations for the analog solver. For the modified nodal analysis used in
most SPICE-like simulators, these unknowns are the node voltages and certain branch currents.

If the expression does not depend explicitly on the unknown, then ddx () returns zero (0). Care must be
taken when using implicit equations or indirect assignments, for which the simulator may create internal
unknowns; derivatives with respect to these internal unknowns cannot be accessed with ddx () .

Unlike the ddt () operator, no tolerance is required because the partial derivative is computed symbolically
and evaluated at the current operating point.

This first example uses ddx () to obtain the conductance of the diode. The variable gdio is declared as an
output variable (see 3.2.1) so that its value is available for inspection by the designer.

module diode(a,c);
inout a, c;
electrical a, c;
parameter real IS = 1.0e-14;
real idio;
(*desc="small-signal conductance"*)
real gdio;
analog begin
idio = IS * (limexp(V(a,c)/$vt) - 1);
gdio = ddx(idio, V(a));
I(a,c) <+ idio;
end
endmodule

The next example adds a series resistance to the diode using an implicit equation. Note that gdio does not
represent the total conductance because the flow access I(a,c) requires introduction of another unknown in
the system of equations. The conductance of the diode is properly reported as gef £, which includes the
effects of RS and the nonlinear equation.

module diode(a,c);
inout a, c;
electrical a, c;
parameter real IS = 1.0e-14;
parameter real RS 0.0;
real idio, gdio;

(*desc="effective conductance"*)
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real geff;

analog begin
idio = IS * (limexp((V(a,c)-RS*I(a,c))/$vt) - 1);
gdio = ddx(idio, V(a)):;
geff = gdio / (RS * gdio + 1.0);
I(a,c) <+ idio;

end

endmodule

The final example implements a voltage-controlled dependent current source and is used to illustrate the
computations of partial derivatives.

module vccs (pout,nout,pin,nin);
inout pout, nout, pin, nin;
electrical pout, nout, pin, nin;
parameter real k = 1.0;
real vin, one, minusone, zero;
analog begin

vin = V(pin,nin);
one = ddx(vin, V(pin));
minusone = ddx(vin, V(nin));

zero = ddx(vin, V(pout));
I (pout,nout) <+ k * wvin;
end
endmodule

The names of the variables indicate the values of the partial derivatives: +1, -1, or 0. A SPICE-like simulator
would use these values (scaled by the parameter k) in the Newton-Raphson solution method.

4.5.7 Absolute delay operator

absdelay () implements the absolute transport delay for continuous waveforms (use the transi-
tion () operator to delay discrete-valued waveforms). The general form is

absdelay ( input , td [ , maxdelay ])

input is delayed by the amount #d. In all cases td shall be a positive number. If the optional maxdelay is spec-
ified, then td can vary. If td becomes greater than maxdelay, maxdelay will be used as a substitute for td. If
maxdelay is not specified, the value of #d when the absdelay () is first evaluated shall be used and any
future changes to #d shall be ignored.

In DC and operating point analyses, absdelay () returns the value of its input. In AC and other small-sig-
nal analyses, the absdelay () operator phase-shifts the input expression to the output of the delay opera-
tor based on the following formula.

Output(®) = Input(®) - e /o4

td is evaluated as a constant at a particular time for any small signal analysis. In time-domain analyses,
absdelay () introduces a transport delay equal to the instantaneous value of #d based on the following for-

mula.

Output(t) = Input(max(t—td, 0))
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The transport delay td can be either constant (typical case) or vary as a function of time (when maxdelay is
defined). When calculating the output at time ¢, the absdelay () operator will use linear interpolation as
needed to determine the input around time:

max(t—1td, 0)

A time-dependent transport delay is shown in Figure 4-4, with a ramp input to the absdelay operator for
both positive and negative changes in the transport delay ¢d and a maxdelay of 5.

44 r— — — — A
I | .
Input | | Lot
3_
td(s) - — — - I '
|
Output AmmmmEEEm o
1_ _____

Emmmmmm e e®

Figure 4-4: Transport delay example

From time 0 until 2s, the output remains at input (0). With a delay of 2s, the output then starts tracking
input (t - 2). At 3s, the transport delay changes from 2s to 4s, switching the output back to input (0),
since input (max (t-td, 0)) returns 0. The output remains at this level until 4s when it once again starts
tracking the input from t = 0. At 5s the transport delay goes to 1s and the output correspondingly jumps
from its current value to the value defined by input (t - 1).

4.5.8 Transition filter

transition () smooths out piecewise constant waveforms. The transition filter is used to imitate transi-
tions and delays on digital signals (for non-piecewise constant signals, see 4.5.9). This function provides
controlled transitions between discrete signal levels by setting the rise time and fall time of signal transi-
tions, as shown in Figure 4-5.

input_expression(t) output_expression(t)

Figure 4-5: Transition filter example
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transition () stretches instantaneous changes in signals over a finite amount of time and can delay the
transitions, as shown in Figure 4-6.

Input to transition filter

Response of transition filter
with transition times specified

Figure 4-6: Shifting the transition filter

The general form of the transition () filteris

transition (expr[, td[, rise_time[ , fall time[ , time tol]]]])

The input expression is expected to evaluate over time to a piecewise constant waveform. When applied,
transition () forces all positive transitions of expr to occur over rise time and all negative transitions
to occur in fall time (after an initial delay of #d). Thus, td models transport delay and rise time and fall time
model inertial delay.

transition () returns a real number which describes a piecewise linear function over time. The transi-
tion function causes the simulator to place time-points at both corners of a transition. If time_tol is not spec-
ified, the transition function causes the simulator to assure each transition is adequately resolved.

td, rise_time, fall time, and time tol are optional, but if specified shall be non-negative. If #d is not speci-
fied, it is taken to be zero (0. 0). If only a positive rise_time value is specified, the simulator uses it for both
rise and fall times. If neither rise_time nor fall time are specified or are equal to zero (0. 0), the rise and fall
time default to the value defined by ‘default transition.If a time_tol value of zero (0.0) is speci-
fied, the simulator shall apply a suitable value.

If ‘default_transition is not specified the default behavior approximates the ideal behavior of a
zero-duration transition. Forcing a zero-duration transition is undesirable because it could cause conver-
gence problems. Instead, a negligible, but non-zero, transition time is used. The small non-zero transition
time allows the simulator to shrink the timestep small enough so a smooth transition occurs and any conver-
gence problems are avoided. The simulator does not force a time point at the trailing corner of a transition to
avoid causing the simulator to take very small time steps, which would result in poor performance.

In DC analysis, transition () passes the value of the expr directly to its output. The transition fil-
ter is designed to smooth out piecewise constant waveforms. When applied to waveforms which vary
smoothly, the simulation results are generally unsatisfactory. In addition, applying the transition function to
a continuously varying waveform can cause the simulator to run slowly. Use transition () for discrete
signals and slew () (see 4.5.9) for continuous signals.

A transition is created when the input expression changes, and at this point it uses the value of ¢d, rise_time,
fall time and time_tol to determine the new pending transition operator. If the effects are immediate, td=0,
then current transitions and scheduled ones are canceled, and the new one is created. If #d is before a previ-
ously scheduled transition, then the previously scheduled transition(s) are canceled and a new one is created.
If ¢d is after previously scheduled transition then it adds the new transition to the pending transition(s) allow-
ing an arbitrary number of pending transitions. Consider a digital clock that is required to be driven out onto
an analog port.
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always #5 clk = ~clk;
analog V(aclk) <+ transition(clk,0,1p);

If the delay on the transition is greater than ' period, then multiple pending transitions are stored on the
transition operator.

always #5 clk = ~clk;
analog V(aclk) <+ transition(clk,5.1n,1p);

A transition is considered active during the period of time (rise or fall) that we are transitioning the output
from one value to another.

An active transition shall be interrupted if the input to the transition () changes value while in this
active transitioning region. An interrupted transition is not considered a new transition, but rather a readjust-
ment of the original transition. To determine the time that the readjusted transition will reach the new desti-
nation, the slope shall be calculated using either the original transition's origin or destination as the new
origin based on the following criteria:

—  If the original transition was rising and the new destination value is below the value at the interrup-
tion, then the original transition's destination shall be used to compute the new origin. Referring to
Figure 4-7, consider an original transition that rises from (t1,v1) to (t2,v2) with a rise time of tr1=t2-
t1, which is interrupted at the point (ti,vi) with a new destination value (v3), where v3 <vi. Then the
original transition's destination (v2) shall be used along with the rescheduled transition's actual fall
time (tf3), when calculating the slope: (v3-v2)/tf3. This slope will be applied from the point of inter-
ruption (ti,vi), and the readjusted transition's expected end time (t3) is then calculated using this
slope, now shifted left, along with the time and value level at the point of the interruption: t3 = ti +
(v3-vi)/slope. The new origin for the transition is now (t4,v4), which will be used if the transition is
interrupted again.

Value
A

< »le »!
< >

try g tf3

1
! 1
t,V;
ta,Va ksh;ft Ieit7+2r2 Original destination
1 _- : N

L,V

New destination

» Time

Interrupt

Figure 4-7: Interrupted rising transition (falling)

—  If the original transition was rising and the new destination value is above the value at the interrup-
tion, then the original transition's origin shall be used to compute the new origin. Referring to
Figure 4-8, consider an original transition that rises from (t1,v1) to (t2,v2) with a rise time of tr1=t2-
t1, which is interrupted at the point (ti,vi) with a new destination value (v3), where v3 > vi, and with
a new transition time tr3. Then the original transition's origin (v1) shall be used along with the new
rise time (tr3), to calculate the slope: (v3-v1)/tr3.

This slope will be applied from the point of interruption (ti,vi), and the readjusted transition's ex-
pected end time (t3) is then calculated using this slope, along with the time and value level at the
point of the interruption: t3 = ti + (v3-vi)/slope. The new